怎样用数学解方程
1个回答
展开全部
常见的求最值方法有:
1.配方法:
形如的函数,根据二次函数的极值点或边界点的取值确定函数的最值.
2.判别式法:
形如的分式函数,
将其化成系数含有y的关于x的二次方程.由于,
0,
求出y的最值,
此种方法易产生增根,
因而要对取得最值时对应的x值是否有解检验.
3.利用函数的单调性 首先明确函数的定义域和单调性,
再求最值.
4.利用均值不等式,
形如的函数,
及,
注意正,定,等的应用条件,
即:
a,
b均为正数,
是定值,
a=b的等号是否成立.
5.换元法:
形如的函数,
令,反解出x,
代入上式,
得出关于t的函数,
注意t的定义域范围,
再求关于t的函数的最值.
还有三角换元法,
参数换元法.
6.数形结合法
形如将式子左边看成一个函数,
右边看成一个函数,
在同一坐标系作出它们的图象,
观察其位置关系,
利用解析几何知识求最值.
求利用直线的斜率公式求形如的最值.
7.利用导数求函数最值.
1.配方法:
形如的函数,根据二次函数的极值点或边界点的取值确定函数的最值.
2.判别式法:
形如的分式函数,
将其化成系数含有y的关于x的二次方程.由于,
0,
求出y的最值,
此种方法易产生增根,
因而要对取得最值时对应的x值是否有解检验.
3.利用函数的单调性 首先明确函数的定义域和单调性,
再求最值.
4.利用均值不等式,
形如的函数,
及,
注意正,定,等的应用条件,
即:
a,
b均为正数,
是定值,
a=b的等号是否成立.
5.换元法:
形如的函数,
令,反解出x,
代入上式,
得出关于t的函数,
注意t的定义域范围,
再求关于t的函数的最值.
还有三角换元法,
参数换元法.
6.数形结合法
形如将式子左边看成一个函数,
右边看成一个函数,
在同一坐标系作出它们的图象,
观察其位置关系,
利用解析几何知识求最值.
求利用直线的斜率公式求形如的最值.
7.利用导数求函数最值.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询