高数 求不定积分(1)∫[(1-x)/根号(9-4x^2)]dx(2)∫dx/x+根号(1-x^2)(3)∫dx/1+根
1个回答
展开全部
第一题:
令x=(3/2)sinu,则:sinu=2x/3,u=arcsin(2x/3),dx=(3/2)cosudu.
∴∫[(1-x)/√(9-4x^2)]dx
=(3/2)∫{[1-(3/2)sinu]/√[9-9(sinu)^2]}cosudu
=(1/4)∫(2-sinu)du
=(1/2)∫du-(1/4)∫sinudu
=(1/2)u+(1/4)cosu+C
=(1/2)arcsin(2x/3)+(1/4)√[1-(sinu)^2]+C
=(1/2)arcsin(2x/3)+(1/4)√[1-(2x/3)^2]+C
=(1/2)arcsin(2x/3)+(1/12)√(9-4x^2)+C
第二题:
令x=sinu,则:u=arcsinx,dx=cosudu.
∴∫{1/[x+√(1-x^2)]}dx
=∫[1/(sinu+cosu)]cosudu
=∫[cosu/(sinu+cosu)]du.
=(√2/2)∫{cosu/[(√2/2)sinu+(√2/2)cosu]}du
=(√2/2)∫{cos(u+π/4-π/4)/[(sinucos(π/4)+cosusin(π/4)]}d(u+π/4)
=(√2/2)∫{[cos(u+π/4)cos(π/4)+sinusin(π/4)]/sin(u+π/4)}d(u+π/4)
=(1/2)∫{[cos(u+π/4)+sin(u+π/4)]/sin(u+π/4)}d(u+π/4)
=(1/2)∫[cos(u+π/4)/sin(u+π/4)]d(u+π/4)+(1/2)∫d(u+π/4)
=(1/2)∫[1/sin(u+π/4)]d[sin(u+π/4)]+(1/2)(u+π/4)
=(1/2)ln|sin(u+π/4)|+(1/2)u+C
=(1/2)arcsinx+(1/2)ln|sinucos(π/4)+cosusin(π/4)|+C
=(1/2)arcsinx+(1/2)ln[(√2/2)|sinu+cosu|]+C
=(1/2)arcsinx+(1/2)ln(√2/2)+(1/2)ln|x+√(1-x^2)|+C
=(1/2)arcsinx+(1/2)ln|x+√(1-x^2)|+C
第三题:
令x=sinu,则:u=arcsinx,du=cosudu.
∴∫{1/[1+√(1-x^2)]}dx
=∫{1/[1+√(1-sin^2u)]}cosudu
=∫[cosu/(1+cosu)]du
=∫du-∫[1/(1+cosu)]du
=u-∫{1/[2cos^2(u/2)]}du
=arcsinx-∫{1/[cos(u/2)]^2}d(u/2)
=arcsinx-tan(u/2)+C
=arcsinx-(1-cosu)/sinu+C
=arcsinx-[1-√(1-sin^2u)]/x+C
=arcsinx-[1-√(1-x^2)]/x+C
第四题:
令x=tanu,则:dx=[1/(cosu)^2]du.
∴∫{1/[x^4√(1+x^2)]}dx
=∫{1/{(tanu)^4√[1+(tanu)^2]}}[1/(cosu)^2]du
=∫[(cosu)^3/(sinu)^4]du
=∫[(cosu)^2/(sinu)^4]d(sinu)
=∫{[1-(sinu)^2]/(sinu)^4}d(sinu)
=∫[1/(sinu)^4]d(sinu)-∫[1/(sinu)^2]d(sinu)
=-(1/3)[1/(sinu)^3]+(1/sinu)+C
={1-(1/3)[1/(sinu)^2]}/sinu+C
={1-(1/3)[1+1/(tanu)^2]√[1+1/(tanu)^2]+C
=[1-(1/3)(1+1/x^2)]√(1+1/x^2)+C
=[1-(1/3)(1+x^2)/x^2](1/x)√(1+x^2)+C
=(1/x)√(1+x^2)-[(1+x^2)/(3x^3)]√(1+x^2)+C
=[(1/x)-1/(3x)]√(1+x^2)-[1/(3x^3)]√(1+x^2)+C
=[2/(3x)-1/(3x^3)]√(1+x^2)+C
第五题:
令x=2sinu,则:sinu=x/2,u=arcsin(x/2),dx=2cosudu.
∫[√(4-x^2)/x^2]dx
=2∫{√[4-4(sinu)^2]/(2sinu)^2}cosudu
=4∫[(cosu)^2/(2sinu)^2]du
=∫[1/(sinu)^2]du-∫du
=∫{[1/(cosu)^2]/(tanu)^2}du-u
=∫[1/(tanu)^2]d(tanu)-arcsin(x/2)
=-1/tanu-arcsin(x/2)+C
=-√[1-(sinu)^2]/sinu-arcsin(x/2)+C
=-√[1-(x/2)^2]/(x/2)-arcsin(x/2)+C
=-(1/x)√(4-x^2)-arcsin(x/2)+C
令x=(3/2)sinu,则:sinu=2x/3,u=arcsin(2x/3),dx=(3/2)cosudu.
∴∫[(1-x)/√(9-4x^2)]dx
=(3/2)∫{[1-(3/2)sinu]/√[9-9(sinu)^2]}cosudu
=(1/4)∫(2-sinu)du
=(1/2)∫du-(1/4)∫sinudu
=(1/2)u+(1/4)cosu+C
=(1/2)arcsin(2x/3)+(1/4)√[1-(sinu)^2]+C
=(1/2)arcsin(2x/3)+(1/4)√[1-(2x/3)^2]+C
=(1/2)arcsin(2x/3)+(1/12)√(9-4x^2)+C
第二题:
令x=sinu,则:u=arcsinx,dx=cosudu.
∴∫{1/[x+√(1-x^2)]}dx
=∫[1/(sinu+cosu)]cosudu
=∫[cosu/(sinu+cosu)]du.
=(√2/2)∫{cosu/[(√2/2)sinu+(√2/2)cosu]}du
=(√2/2)∫{cos(u+π/4-π/4)/[(sinucos(π/4)+cosusin(π/4)]}d(u+π/4)
=(√2/2)∫{[cos(u+π/4)cos(π/4)+sinusin(π/4)]/sin(u+π/4)}d(u+π/4)
=(1/2)∫{[cos(u+π/4)+sin(u+π/4)]/sin(u+π/4)}d(u+π/4)
=(1/2)∫[cos(u+π/4)/sin(u+π/4)]d(u+π/4)+(1/2)∫d(u+π/4)
=(1/2)∫[1/sin(u+π/4)]d[sin(u+π/4)]+(1/2)(u+π/4)
=(1/2)ln|sin(u+π/4)|+(1/2)u+C
=(1/2)arcsinx+(1/2)ln|sinucos(π/4)+cosusin(π/4)|+C
=(1/2)arcsinx+(1/2)ln[(√2/2)|sinu+cosu|]+C
=(1/2)arcsinx+(1/2)ln(√2/2)+(1/2)ln|x+√(1-x^2)|+C
=(1/2)arcsinx+(1/2)ln|x+√(1-x^2)|+C
第三题:
令x=sinu,则:u=arcsinx,du=cosudu.
∴∫{1/[1+√(1-x^2)]}dx
=∫{1/[1+√(1-sin^2u)]}cosudu
=∫[cosu/(1+cosu)]du
=∫du-∫[1/(1+cosu)]du
=u-∫{1/[2cos^2(u/2)]}du
=arcsinx-∫{1/[cos(u/2)]^2}d(u/2)
=arcsinx-tan(u/2)+C
=arcsinx-(1-cosu)/sinu+C
=arcsinx-[1-√(1-sin^2u)]/x+C
=arcsinx-[1-√(1-x^2)]/x+C
第四题:
令x=tanu,则:dx=[1/(cosu)^2]du.
∴∫{1/[x^4√(1+x^2)]}dx
=∫{1/{(tanu)^4√[1+(tanu)^2]}}[1/(cosu)^2]du
=∫[(cosu)^3/(sinu)^4]du
=∫[(cosu)^2/(sinu)^4]d(sinu)
=∫{[1-(sinu)^2]/(sinu)^4}d(sinu)
=∫[1/(sinu)^4]d(sinu)-∫[1/(sinu)^2]d(sinu)
=-(1/3)[1/(sinu)^3]+(1/sinu)+C
={1-(1/3)[1/(sinu)^2]}/sinu+C
={1-(1/3)[1+1/(tanu)^2]√[1+1/(tanu)^2]+C
=[1-(1/3)(1+1/x^2)]√(1+1/x^2)+C
=[1-(1/3)(1+x^2)/x^2](1/x)√(1+x^2)+C
=(1/x)√(1+x^2)-[(1+x^2)/(3x^3)]√(1+x^2)+C
=[(1/x)-1/(3x)]√(1+x^2)-[1/(3x^3)]√(1+x^2)+C
=[2/(3x)-1/(3x^3)]√(1+x^2)+C
第五题:
令x=2sinu,则:sinu=x/2,u=arcsin(x/2),dx=2cosudu.
∫[√(4-x^2)/x^2]dx
=2∫{√[4-4(sinu)^2]/(2sinu)^2}cosudu
=4∫[(cosu)^2/(2sinu)^2]du
=∫[1/(sinu)^2]du-∫du
=∫{[1/(cosu)^2]/(tanu)^2}du-u
=∫[1/(tanu)^2]d(tanu)-arcsin(x/2)
=-1/tanu-arcsin(x/2)+C
=-√[1-(sinu)^2]/sinu-arcsin(x/2)+C
=-√[1-(x/2)^2]/(x/2)-arcsin(x/2)+C
=-(1/x)√(4-x^2)-arcsin(x/2)+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询