若q>1,bn=2n+1/an,求bn前n项和Tn,an=2的n-1次方,a1=1,q=2
1个回答
展开全部
Tn=3+5/2+7/2^2+……+(2n+1)/2^(n-1),①
(1/2)Tn= 3/2+5/2^2+……+(2n-1)/2^(n-1)+(2n+1)/2^n,②
①-②,(1/2)Tn=3+2[1/2+1/2^2+……+1/2^(n-1)]-(2n+1)/2^n
=3+2[1-1/2^(n-1)]-(2n+1)/2^n
=3+2-1/2^(n-2)-(2n+1)/2^n
=5-(2n+5)/2^n,
∴Tn=10-(2n+5)/2^(n-1).
(1/2)Tn= 3/2+5/2^2+……+(2n-1)/2^(n-1)+(2n+1)/2^n,②
①-②,(1/2)Tn=3+2[1/2+1/2^2+……+1/2^(n-1)]-(2n+1)/2^n
=3+2[1-1/2^(n-1)]-(2n+1)/2^n
=3+2-1/2^(n-2)-(2n+1)/2^n
=5-(2n+5)/2^n,
∴Tn=10-(2n+5)/2^(n-1).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询