对于n属于N,用数学归纳法证明:1/n+1+1/n+2+...+1/3n+1大于1

 我来答
游戏解说17
2022-08-02 · TA获得超过945个赞
知道小有建树答主
回答量:313
采纳率:0%
帮助的人:61.6万
展开全部
注:从而n+1到3n,左边共有2n项.
(1)当n=2时,左=1/3 +1/4+1/5+1/6=57/60>54/60=9/10,成立.
(2)假设n=k时,有1/(k+1) +1/(k+2) +...+1/3k >9/10
那么 1/(k+2)+1/(k+3) +...+1/3(k+1)
=[1/(k+1) +1/(k+2)+...+1/3k] +1/(3k+1) +1/(3k+2)+1/(3k+3) -1/(k+1)
>9/10 +1/(3k+3) +1/(3k+3)+1/(3k+3) -1/(k+1)
=9/10
即n=k+1时命题也成立,
从而 原不等式对n∈N,且n>1成立.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式