比较大小: sin515°与sin530° cos 15π/8 与cos14π/9 tan(-13π/4) 与tan(-17π/5)
1个回答
展开全部
sin515=sin(360+155)=sin155=sin(180-25)=sin25
sin530=sin(360+170)=sin170=sin(180-10)=sin10
sin25>sin10 所以sin515>sin530
cos15π/8=cos(2π-π/8)=cosπ/8
cos(14π/9)=cos(2π-4π/9)=cos4π/9
cosπ/8>cos4π/9 所以cos15π/8>cos14π/9
tan(-13π/4)=tan(-3π-π/4)=-tanπ/4
tan(-17π/5)=tan(-3π-2π/5)=-tan2π/5
tan2π/5>tanπ/4 所以-tanπ/4>-tan2π/5 所以tan(-13π/4)>tan(-17π/5)
sin530=sin(360+170)=sin170=sin(180-10)=sin10
sin25>sin10 所以sin515>sin530
cos15π/8=cos(2π-π/8)=cosπ/8
cos(14π/9)=cos(2π-4π/9)=cos4π/9
cosπ/8>cos4π/9 所以cos15π/8>cos14π/9
tan(-13π/4)=tan(-3π-π/4)=-tanπ/4
tan(-17π/5)=tan(-3π-2π/5)=-tan2π/5
tan2π/5>tanπ/4 所以-tanπ/4>-tan2π/5 所以tan(-13π/4)>tan(-17π/5)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询