已知平面向量 OA , OB , OC 满足: | OA |=| OB |=| OC |=1, OA • OB =0 ,?
展开全部
∵ |
OA |=|
OB |=|
OC |=1,
OA •
OB =0 ,
将
OC =x
OA +y
OB 两边平方得
OC 2 = x 2
OA 2 + y 2
OB 2 +2xy
OA •
OB ,
所以 x 2 +y 2 =1,
由于 (x+y) 2 =x 2 +y 2 +2xy≤2(x 2 +y 2 )=2,
因此 x+y≤
2 ,
即 x+y 最大值为
2 .
故答案为:
2,1, 已知平面向量 OA , OB , OC 满足: | OA |=| OB |=| OC |=1, OA • OB =0 ,若 OC =x OA +y OB (x,y∈R),则x+y的最大值是______.
OA |=|
OB |=|
OC |=1,
OA •
OB =0 ,
将
OC =x
OA +y
OB 两边平方得
OC 2 = x 2
OA 2 + y 2
OB 2 +2xy
OA •
OB ,
所以 x 2 +y 2 =1,
由于 (x+y) 2 =x 2 +y 2 +2xy≤2(x 2 +y 2 )=2,
因此 x+y≤
2 ,
即 x+y 最大值为
2 .
故答案为:
2,1, 已知平面向量 OA , OB , OC 满足: | OA |=| OB |=| OC |=1, OA • OB =0 ,若 OC =x OA +y OB (x,y∈R),则x+y的最大值是______.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询