求函数f( x)= arctanx/(2n+1)的导数

 我来答
百度网友8362f66
2023-01-16 · TA获得超过8.3万个赞
知道大有可为答主
回答量:8690
采纳率:83%
帮助的人:3413万
展开全部
分享一种解法。∵[arctanx]'=1/(1+x²),当x²<1时,1/(1+x²)=,n=01,2,…,∞,
∴arctanx=∑∫(0,x)(-x²)^ndx=∑[(-1)^n][x^(2n+1)]/(2n+1)。【设an=[(-1)^n]】
∴f(x)=∑(an)(1+x²)[x^(2n+1)]/(2n+1)=∑(an)[x^(2n+1)]/(2n+1)+∑(an)[x^(2n+3)]/(2n+1)。其中x²<1;n=01,2,…,∞;an=[(-1)^n]。
供参考。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式