因子分析适合哪些问题的分析

 我来答
SPSSAU
2023-11-13 · 百度认证:SPSSAU官方账号,优质教育领域创作者
SPSSAU
SPSSAU,也称"在线SPSS",一款网页版数据科学算法平台系统,提供"拖拽点一下"的极致体验和智能化分析结果。
向TA提问
展开全部

因子分析(探索性因子分析)用于探索分析项(定量数据)应该分成几个因子(变量),比如20个量表题项应该分成几个方面较为合适;用户可自行设置因子个数,如果不设置,系统会以特征根值大于1作为判定标准设定因子个数。

因子分析通常有三个步骤;第一步是判断是否适合进行因子分析;第二步是因子与题项对应关系判断;第三步是因子命名。

  • 第一步:判断是否进行因子分析,判断标准为KMO值大于0.6;

  • 第二步:因子与题项对应关系判断。

  • 因子与题项对应关系判断:假设预期为3个因子(变量),分析题项为10个;因子与题项交叉共得到30个数字,此数字称作”因子载荷系数”(因子载荷系数值表示分析项与因子之间的相关程度); 针对每个因子(变量),对应10个”因子载荷系数”,针对每个分析项,则有3个”因子载荷系数值”(比如0.765,-0.066,0.093),选出3个数字绝对值大于0.4的那个值(0.765),如果其对应因子1,则说明此题项应该划分在因子1下面.

  • 对不合理题项进行删除:共有三种情况; 第一类:如果分析项的共同度(公因子方差)值小于0.4,则对应分析项应该作删除处理;第二类:某分析项对应的”因子载荷系数”的绝对值,全部均小于0.4,也需要删除此分析项;第三类:如果某分析项与因子对应关系出现严重偏差(通常也称作‘张冠李戴’),也需要对该分析项进行删除处理。

  • 第三步:因子命名。

  • 在第二步删除掉不合理题项后,并且确认因子与题项对应关系良好后,则可结合因子与题项对应关系,对因子进行命名。

SPSSAU操作如下:

使用因子分析进行信息浓缩研究,首先分析研究数据是否适合进行因子分析,从上表可以看出:KMO值为0.922,大于0.6,满足因子分析的前提要求,意味着数据可用于因子分析研究。以及数据通过Bartlett 球形度检验(p<0.05),说明研究数据适合进行因子分析。接下来查看分析项是否需要调整。

2.因子与测量项之间的关系

一般情况下,如果16项与4个因子之间的对应关系情况,与专业知识情况不符合,比如第一项被划分到了第一个因子下面,此时则说明可能Q1这项应该被删除处理,其出现了‘张冠李戴’现象。因而在进行分析时很可能会对部分不合理项进行删除处理。除此之外,也有可能会出现‘纠缠不清’现象。

(1)“张冠李戴”

一般情况下,如果16项与4个因子之间的对应关系情况,与专业知识情况不符合,比如Q1被划分到了第一个因子下面,此时则说明可能Q1这项应该被删除处理,其出现了‘张冠李戴’现象。例如案例中的“品牌代言人3”、“品牌代言人4”应该属于因子4但是分析时被划分到别的因子中。

(2)”纠缠不清“

除了“张冠李戴”现象,有时候会出现‘纠缠不清’现象,比如案例中的“品牌活动1”可归属为因子1,同时也可归属到因子3,这种情况较为正常(称作‘纠缠不清’),需要结合实际情况处理即可,可将该项删除,也可不删除,此案例中“品牌活动1”按分析应属于因子3,所以不进行删除处理,通过分析其他‘纠缠不清’的分析项也是一样,都不进行删除处理,这时,分析带有一定主观性。(PS:案例中‘纠缠不清’的情况不只有“品牌活动1”比如“品牌活动3”等,需要根据实际情况选择是否处理)。

因子分析是一个多次重复的过程,比如删除某个或多个题项后,则需要重新再次分析进行对比选择等。最终目的在于:因子与分析项对应关系,与专业知识情况基本吻合。总结可知,“品牌代言人3”、“品牌代言人4”应该属于因子4但是分析时被划分到别的因子中。属于“张冠李戴”现象所以需要删除处理。删除后重新分析如下。

上图可知“品牌代言人1-2”可同时出现在因子3和因子4下并且1代言人2还出现在因子2下面,但考虑到因子4当前仅余下2项,因而表示可以接受,以及“品牌活动1、3、4”、“社会责任感2”是一样的,根据专业知识可考虑不用删除,最终找出四个因子,它们分别与项之间的对应关系良好。因子分析结束。

(1)KMO 和 Bartlett 的检验

使用因子分析进行信息浓缩研究,首先分析研究数据是否适合进行因子分析,从上表可以看出:KMO值为0.914,大于0.6,满足因子分析的前提要求,意味着数据可用于因子分析研究。以及数据通过Bartlett 球形度检验(p<0.05),说明研究数据适合进行因子分析。

(2)因子载荷系数表

所有研究项对应的共同度值均高于0.4,意味着研究项和因子之间有着较强的关联性,因子可以有效的提取出信息。确保因子可以提取出研究项大部分的信息量之后,接着分析因子和研究项的对应关系情况(因子载荷系数绝对值大于0.4时即说明该项和因子有对应关系)。从上图可知“品牌代言人2”可同时出现在因子2、因子3和因子4下面,但考虑到因子4当前仅余下2项,因而表示可以接受,其他分析项出现“纠缠不清”的情况也是就研究问题来说也是可以接受的。最终找出品牌活动、品牌代言、社会责任感以及品牌赞助共4个维度,它们分别与项之间的对应关系良好。因子分析结束。分析项不需要进一步调整,接下来进行查看因子的提取个数以及信息浓缩情况。

4.因子提取

(1)方差解释率

方差解释率可以说明因子包含原数据信息的多少,方差解释率越大说明因子包含的信息越多。因子分析中,主要关注旋转后的数据部分。由上图可以显示14个指标中,四个因子方差解释率分别为26.329%、26.329%、26.329%以及26.329%,累积方差解释率由这四项者相加为89.573%,累积方差解释率这个值没有固定标准,一般超过60%都可以接受。特征根对于因子的提取有什么作用,以下展开来说。

(2)特征根

特征根一般是指标旋转前每个因子的贡献程度。此值的总和与项目数匹配,此值越大,代表因子贡献越大。当然因子分析通常需要综合自己的专业知识综合判断,即使是特征根值小于1,也一样可以提取因子。在进行因子分析时,研究者没有预设因子数,系统就会以特征根“大于1”为标准进行划分。因为此案例在分析前的预设因子个数为4所以也同样可以进行分析。除了特征根之外SPSSAU还提供了更加直观的碎石图帮助判断。

碎石图

从图中可以看出,横轴表示指标数,纵轴表示特征根值,当提取前4个因子时,特征根值变化较明显,对解释原有变量的贡献较大;当提取4个以后的因子时,特征根变化也相对平稳,对原有变量贡献相对较小,由此可见提取前四个因子对原变量有的显著作用。碎石图仅辅助决策因子个数,如果由此图分析三个因子也是可以的。

此案例按专业知识来看提取四个因子,如果没有预设因子个数也可以默认让系统进行决策。提取后要观察因子的信息浓缩程度。

5.信息浓缩

旋转后因子载荷系数表

旋转后因子载荷系数可以用于判断因子与题项之间的对应关系,如果出现“张冠李戴”或者“纠缠不清”的情况需要关注,上述结果已经是处理后的结果,以及各个题项的共同度。如果某分析项对应的多个因子载荷系数绝对值均低于0.4,可考虑删除该项。上图分析中均大于0.4。所以不用删除调整。从结果中可以看出,使用因子分析对14个项进行浓缩处理,浓缩为四个因子。因子与题项对应关系如下:

其中品牌赞助1-4在因子1上有较高的载荷,说明因子1可以解释这几个分析项,它们主要反映了短视频平台进行品牌传播中的品牌赞助;社会责任感1-4在因子2上有较高的载荷,它们主要反映了短视频平台进行品牌传播的社会责任感;品牌活动1-4在因子3上有较高的载荷,它们主要反映了短视频平台进行品牌传播的品牌活动;品牌代言人1-2在因子4上有较高的载荷,它们主要反映了短视频平台进行品牌传播的品牌代言人方面。

上山打怪兽9u
2022-10-12 · TA获得超过439个赞
知道小有建树答主
回答量:2069
采纳率:100%
帮助的人:32.9万
展开全部

因子分析适合问题的分析如下:

因子分析可以做经济效益的评价,指标有百元固定资产原值实现产值、利税、总产值实现利税、销售收入实现利税。

把很多指标综合成较少因子,既有利于对问题进行分析和解释,又能便于抓住主要矛盾做出科学评价。

因子分析的形成和发展有相当长的历史,早期由于计算量大,又缺少高速计算机的设备,使因子分析的使用和发展受到了很大限制。后来由于计算机的高速发展,使得因子分析的理论研究和计算问题得到了很大的发展,目前广泛应用于经济学、社会学、考古学、生物学、医学、地质学以及体育科学等各个领域。

因子分析法是一种多元统计的方法,其基本思想是通过各变量之间的相关系数矩阵的内部结构的研究,给出少数几个能表示所有显在变量的隐性因素,并描述给变量之间的关系,而这几个少数的变量是不能直接观察到的,通常被称为因子。

进而依据各变量相关性大小把变量进行分组,使得在同一个组内的变量的相关性较高,而不同组之间的变量的相关性较低。因子分析可以消除指标间的高相关性,也就是指标的重复现象,通过现象抽出事物的本质属性。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式