logistic回归分析适用于
logistic回归分析适用于流行病学资料的危险因素分析。
logistic回归又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率,等等。
例如,想探讨胃癌发生的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群肯定有不同的体征和生活方式等。
这里的因变量就是是否胃癌,即“是”或“否”,为两分类变量,自变量就可以包括很多了,例如年龄、性别、饮食习惯、幽门螺杆菌感染等。
自变量既可以是连续的,也可以是分类的。通过logistic回归分析,就可以大致了解到底哪些因素是胃癌的危险因素。
2023-08-07 · 百度认证:SPSSAU官方账号,优质教育领域创作者
Logit回归分析用于研究X对Y的影响,并且对X的数据类型没有要求,X可以为定类数据(可以做虚拟变量设置),也可以为定量数据,但要求Y必须为定类数据,并且根据Y的选项数,使用相应的数据分析方法。logit回归分析一般可分为三类,分别是二元logit回归、多分类logit回归、有序logit回归,三类logit回归区别如下:
(1)二元logit回归分析,因变量为二分类变量。
(2)多分类logit回归。因变量为分类数据多组且无序。
(3)有序logit回归,因变量为分类数据多组且有序。
二元Logit回归分析用于研究X对于Y的影响关系,其中X为定量数据或者定类数据,Y为二分类定类数据,(Y的数字一定只能为0和1)例如愿意和不愿意、是和否等。
(1)如果X是定类数据,比如性别或学历等。那么就需要首先对它们做虚拟哑变量处理,使用SPSSAU“数据处理”-“生成变量”功能。操作如下图:
因变量Y只能包括数字0和1,如果因变量的原始数据不是这样,那么就需要数据编码,设置成0和1,使用SPSSAU“数据处理”-“数据编码”功能,操作如下图:
(2)多分类logit回归
只要是logit回归,都是研究X对于Y的影响,区别在于因变量Y上,如果Y有多个选项,并且各个选项之间不具有对比意义,例如,1代表“黑龙江省”,2代表“云南省”,3代表“四川省”,4代表“陕西省”,数值仅代表不同类别,数值大小不具有对比意义,那么应该使用多分类Logit回归分析。如果说因变量Y的类别个数很多,比如为10个,此时建议时对类别进行组合下,尽量少的减少类别数量,便于后续进行分析。此步骤可通过SPSSAU数据处理模块的数据编码功能完成。
在“进阶方法”模块中选择“多分类Logit”方法,将Y定类变量放于上方分析框内,X定类/定量变量放于下方分析框内,点击“开始分析”即可。
有序logit回归:
只要是logit回归,都是研究X对于Y的影响,区别在于因变量Y上,如果Y有多个选项,并且各个选项之间具有对比意义,例如:1代表不满意,2代表一般,3代表满意就可以使用有序logit回归分析。
在“进阶方法”模块中选择“有序Logit”方法,将Y定类变量放于上方分析框内,X定类/定量变量放于下方分析框内,点击“开始分析”即可。