二阶常系数线性非齐次微分方程特解有哪些?

 我来答
baochuankui888
高粉答主

2022-09-25 · 醉心答题,欢迎关注
知道答主
回答量:60
采纳率:100%
帮助的人:9728
展开全部

较常用的几个:

1、Ay''+By'+Cy=e^mx 

特解    y=C(x)e^mx

2、Ay''+By'+Cy=a sinx + bcosx    

特解    y=msinx+nsinx

3、Ay''+By'+Cy= mx+n                 

特解    y=ax

通解

1、两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)

2、两根相等的实根:y=(C1+C2x)e^(r1x)

3、一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)

扩展资料:

标准形式   y''+p(x)y'+q(x)y=f(x)

解法

通解=非齐次方程特解+齐次方程通解

对二阶常系数线性非齐次微分方程形式ay''+by'+cy=p(x)  的特解y*具有形式

y*= 其中Q(x)是与p(x)同次的多项式,k按α不是特征根、是单特征根或二重特征根(上文有提),依次取0,1或2.

将y*代入方程,比较方程两边x的同次幂的系数(待定系数法),就可确定出Q(x)的系数而得特解y*。

多项式法:

设常系数线性微分方程y''+py'+qy =pm  (x)e^(λx),其中p,q,λ是常数,pm(x)是x的m次多项式,令y=ze^(λz) 。

则方程可化为:F″(λ)/2!z″+F′(λ)/1!z′+F(λ)z=pm(x) ,这里F(λ)=λ^2+pλ+q为方程对应齐次方程的特征多项式。

升阶法:

设y''+p(x)y'+q(x)y=f(x),当f(x)为多项式时,设f(x)=a0x^n+a1x^(n-1)+…+a(n-1)x+an,此时,方程两边同时对x求导n次,得

y'''+p(x)y''+q(x)y'=a0x^n+a1x^(n-1)+…+a(n-1)x+an……

y^(n+1)+py^(n)+qy^(n-1)=a0n!x+a1(n-1)!

y^(n+2)+py^(n+1)+qy^(n)=a0n!

令y^n=a0n!/q(q≠0),此时,y^(n+2)=y^(n+1)=0。

参考资料:百度百科——二阶常系数线性微分方程

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式