在菱形ABCD中.AB=BD.点E.F分别在AB.AD上,AE=DF.连BF于DE相交于G,连CG
1个回答
展开全部
证明:延长GB至M使BM=DG,连接CM
∵四边形ABCD为菱形
∴AB=BC=CD=AD∵AB=BD
∴AB=BC=CD=AD=BD
∴△ABD,△BCD为等边三角形
∴∠ADB=∠CDB=∠CBD=∠A=60°
∵AE=DF∴△ADE≌△DBF
∴∠1=∠2∴∠CDG=∠ADB+∠CDB-∠2=120°-∠2
∵∠CBM=180°-∠CBD-∠1=120°-∠1
∴∠CDG=∠CBM∵CD=CB,DG=BM
∴△CDG≌△CBM
∴CG=BM,∠3=∠4
∵∠3+∠5=∠BCD=60°
∴△CMG为等边三角形
∴CG=GM=BG+BM
∵DG=BM
∴CG=BG+DG
∵四边形ABCD为菱形
∴AB=BC=CD=AD∵AB=BD
∴AB=BC=CD=AD=BD
∴△ABD,△BCD为等边三角形
∴∠ADB=∠CDB=∠CBD=∠A=60°
∵AE=DF∴△ADE≌△DBF
∴∠1=∠2∴∠CDG=∠ADB+∠CDB-∠2=120°-∠2
∵∠CBM=180°-∠CBD-∠1=120°-∠1
∴∠CDG=∠CBM∵CD=CB,DG=BM
∴△CDG≌△CBM
∴CG=BM,∠3=∠4
∵∠3+∠5=∠BCD=60°
∴△CMG为等边三角形
∴CG=GM=BG+BM
∵DG=BM
∴CG=BG+DG
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询