设A,B均为n阶矩阵,且AB=A+B,证明A,B可交换

 我来答
游戏王17
2022-07-22 · TA获得超过890个赞
知道小有建树答主
回答量:214
采纳率:0%
帮助的人:64.1万
展开全部
证明:由 AB=A+B
得 (A-E)(B-E) = AB-A-B+E = E
所以 A-E 可逆,且 E = (B-E)(A-E) = BA-B-A+E
所以 BA = A+B = AB.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式