设A,B均为n阶矩阵,且AB=A+B,证明A,B可交换
展开全部
证明:由 AB=A+B
得 (A-E)(B-E) = AB-A-B+E = E
所以 A-E 可逆,且 E = (B-E)(A-E) = BA-B-A+E
所以 BA = A+B = AB.
得 (A-E)(B-E) = AB-A-B+E = E
所以 A-E 可逆,且 E = (B-E)(A-E) = BA-B-A+E
所以 BA = A+B = AB.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询