平面向量平行和垂直的判定方法!!
2022-12-14 · 百度认证:北京惠企网络技术有限公司官方账号
假设向量a//向量b
a=(x1,y1),b=(x2,y2)
则有a=λb
(x1,y1)=(λx2,λy2
即x1/x2=y1/y2=λ
变形得x1y2-x2y1=0
下面证明垂直,垂直很简单,用数量积假设向量a⊥向量b,a=(x1,y1),b=(x2,y2)
∴向量a·向量b=0
∴x1x2+y1y2=0
扩展资料:
已知两个非零向量a、b,那么a·b=|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2
数量积具有以下性质:
a·a=|a|2
a·b=b·a
a·(b+c)=a·b+a·c
a⊥b=0=>a·b=0
a·b=0=>a⊥b=0(a≠0,b≠0)
a=kb<=>a//b
|a·b|≤|a|·|b|
e1·e2=|e1||e2|cosθ
平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量。
单位向量:模等于1个单位长度的向量叫做单位向量,通常用e表示。
三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c构成左手系时ε=-1)
参考资料: