∫x²arctanxdx怎么算

 我来答
妖感肉灵10
2022-12-21 · TA获得超过6.6万个赞
知道顶级答主
回答量:101万
采纳率:99%
帮助的人:2.8亿
展开全部

分部积分思想:

∫x^2arctanxdx=(1/3)∫arctanxdx^3

=(1/3)x^3arctanx-(1/3)∫x^3darctanx

=(1/3)x^3arctanx-(1/3)∫[(x^3+x)-x]/(1+x^2)dx

=(1/3)x^3arctanx-(1/3)∫xdx+(1/3)∫(x)/(1+x^2)dx

=(1/3)x^3arctanx-(1/6)x^2+(1/6)ln(1+x^2)+C(C为常数)

扩展资料:

分部积分的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。常用的分部积分的根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂三指”。分别代指五类基本函数:反三角函数、对数函数、幂函数、三角函数、指数函数的积分。

设函数u=u(x)及v=v(x)具有连续导数,那么,两个函数乘积的导数公式为(uv)'=u'v+uv',移项得 uv'=(uv)'-u'v。

对这个等式两边求不定积分,得:

∫uv'dx=uv-∫u'vdx (1)

公式(1)称为分部积分公式。如果求∫uv'dx有困难,而求∫u'vdx比较容易时,分部积分公式就可以发挥作用了。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式