若lgx^2=lg(根号2-1)-lg(根号2+1),则x+1/x=?
展开全部
lg(√2-1)-lg(√2+1),
=lg[(√2-1)/(√2+1)]
=lg(√2-1)^2
=lgx^2
所以x^2=(√2-1)^2=3-2√2
所以x=√2-1或1-√2
x+1/x=(x^2+1)/x=(3-2√2+1)/x=(4-2√2)/x
x=√2-1
则x+1/x=(4-2√2)(√2+1)/1=2√2
x=1-√2
则x+1/x=(4-2√2)(√2+1)/(-1)=-2√2
=lg[(√2-1)/(√2+1)]
=lg(√2-1)^2
=lgx^2
所以x^2=(√2-1)^2=3-2√2
所以x=√2-1或1-√2
x+1/x=(x^2+1)/x=(3-2√2+1)/x=(4-2√2)/x
x=√2-1
则x+1/x=(4-2√2)(√2+1)/1=2√2
x=1-√2
则x+1/x=(4-2√2)(√2+1)/(-1)=-2√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询