椭圆上任意一点的离心率怎么求?
1个回答
展开全部
设椭圆上的这个点的坐标,为(x, y).
它到焦点的距离等于ex+a.
或 e=√(1-b^2/a²)
椭圆也可以看成是动点到定点F和到定直线1距离之比等于常数e(0<e<1)的点的轨迹.其中,定点F是椭圆的一个焦点,定直线1叫做与该焦点对应的一条准线,而常数e就是椭圆的离心率。由此可知,若M是椭圆上任一点,直线1是与焦点F对应的准线,M到1的距离为d,则|MF|=ed,利用这一关系可得椭圆上一点到焦点的距离转化为它到相应准线的距离.
扩展资料
椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。
椭圆是圆锥曲线的一种,即圆锥与平面的截线。
椭圆的周长等于特定的正弦曲线在一个周期内的长度。
参考资料
长沙永乐康仪器
2024-03-19 广告
2024-03-19 广告
分液漏斗调速振荡器是新开发综合研制成的很新产品 ,其操作安全简单 ,无级调速垂直还转平稳是植物 、生物制品、遗传、病毒、医学、环保等科研,教学和生产部门不可缺少的实验室设备。垂直工作台上配置有专门使用夹具,能装夹多种试瓶在同一条件下振荡搅拌...
点击进入详情页
本回答由长沙永乐康仪器提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询