信号与系统问题 求解答 10
1个回答
展开全部
为了计算离散信号x[n]的奇部和偶部,我们首先需要了解离散信号的奇偶性质。
离散信号x[n]可以分解为偶部x_e[n]和奇部x_o[n],其中:
x_e[n] = 0.5 * (x[n] + x[-n])
x_o[n] = 0.5 * (x[n] - x[-n])
现在我们来看给定的信号x[n]:
x[n] = 3σ[n] + 3σ[n-1] + 3σ[n-2] + 3σ[n-3]
为了计算x_e[n]和x_o[n],我们需要找到x[-n]:
x[-n] = 3σ[-n] + 3σ[-n+1] + 3σ[-n+2] + 3σ[-n+3]
由于单位阶跃信号σ[-n] = 0,我们可以将x[-n]重新写为:
x[-n] = 0 + 3σ[-n+1] + 3σ[-n+2] + 3σ[-n+3]
接下来我们计算x_e[n]:
x_e[n] = 0.5 * (x[n] + x[-n]) = 0.5 * (3σ[n] + 3σ[n-1] + 3σ[n-2] + 3σ[n-3] + 3σ[-n+1] + 3σ[-n+2] + 3σ[-n+3])
我们可以看到x_e[n]的形式与x[n]类似,但包含正和负的时间索引。因此,x_e[n] = 1.5σ[n] + 1.5σ[n-1] + 1.5σ[n-2] + 1.5σ[n-3] - 1.5σ[-n+1] - 1.5σ[-n+2] - 1.5σ[-n+3]。
现在我们计算x_o[n]:
x_o[n] = 0.5 * (x[n] - x[-n]) = 0.5 * (3σ[n] + 3σ[n-1] + 3σ[n-2] + 3σ[n-3] - 3σ[-n+1] - 3σ[-n+2] - 3σ[-n+3])
所以,x_o[n] = 1.5σ[n] + 1.5σ[n-1] + 1.5σ[n-2] + 1.5σ[n-3] + 1.5σ[-n+1] + 1.5σ[-n+2] + 1.5σ[-n+3]。
综上所述,x[n]的奇部x_o[n]和偶部x_e[n]分别为:
x_e[n] = 1.5σ[n] + 1.5σ[n-1] + 1.5σ[n-2] + 1.5σ[n-3] - 1.5σ[-n+1] - 1.5σ[-n+2] - 1.5σ[-n+3]
x_o[n] = 1.5
离散信号x[n]可以分解为偶部x_e[n]和奇部x_o[n],其中:
x_e[n] = 0.5 * (x[n] + x[-n])
x_o[n] = 0.5 * (x[n] - x[-n])
现在我们来看给定的信号x[n]:
x[n] = 3σ[n] + 3σ[n-1] + 3σ[n-2] + 3σ[n-3]
为了计算x_e[n]和x_o[n],我们需要找到x[-n]:
x[-n] = 3σ[-n] + 3σ[-n+1] + 3σ[-n+2] + 3σ[-n+3]
由于单位阶跃信号σ[-n] = 0,我们可以将x[-n]重新写为:
x[-n] = 0 + 3σ[-n+1] + 3σ[-n+2] + 3σ[-n+3]
接下来我们计算x_e[n]:
x_e[n] = 0.5 * (x[n] + x[-n]) = 0.5 * (3σ[n] + 3σ[n-1] + 3σ[n-2] + 3σ[n-3] + 3σ[-n+1] + 3σ[-n+2] + 3σ[-n+3])
我们可以看到x_e[n]的形式与x[n]类似,但包含正和负的时间索引。因此,x_e[n] = 1.5σ[n] + 1.5σ[n-1] + 1.5σ[n-2] + 1.5σ[n-3] - 1.5σ[-n+1] - 1.5σ[-n+2] - 1.5σ[-n+3]。
现在我们计算x_o[n]:
x_o[n] = 0.5 * (x[n] - x[-n]) = 0.5 * (3σ[n] + 3σ[n-1] + 3σ[n-2] + 3σ[n-3] - 3σ[-n+1] - 3σ[-n+2] - 3σ[-n+3])
所以,x_o[n] = 1.5σ[n] + 1.5σ[n-1] + 1.5σ[n-2] + 1.5σ[n-3] + 1.5σ[-n+1] + 1.5σ[-n+2] + 1.5σ[-n+3]。
综上所述,x[n]的奇部x_o[n]和偶部x_e[n]分别为:
x_e[n] = 1.5σ[n] + 1.5σ[n-1] + 1.5σ[n-2] + 1.5σ[n-3] - 1.5σ[-n+1] - 1.5σ[-n+2] - 1.5σ[-n+3]
x_o[n] = 1.5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询