二重积分与二次积分有何不同?

 我来答
暴躁的鹤h
高粉答主

2019-08-23 · 每个回答都超有意思的
知道小有建树答主
回答量:425
采纳率:100%
帮助的人:11.6万
展开全部

没有本质区别.。

将二重积分化为二次积分是为了实现计算,二次积分是计算二重积分的一个方法。

二重积分:二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。

本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。

同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。


扩展资料:

当f(x,y)在区域D上可积时,其积分值与分割方法无关,可选用平行于坐标轴的两组直线来分割D,这时每个小区域的面积Δσ=Δx·Δy,因此在直角坐标系下,面积元素dσ=dxdy,从而二重积分可以表示为

由此可以看出二重积分的值是被积函数和积分区域共同确定的。将上述二重积分化成两次定积分的计算,称之为:化二重积分为二次积分或累次积分。

参考资料来源:百度百科—二重积分

夏天出其不意b5
推荐于2017-10-08 · TA获得超过96.6万个赞
知道顶级答主
回答量:3.1万
采纳率:0%
帮助的人:1.9亿
展开全部
二重积分与二次积分的区别:

二重积分是有关面积的积分,二次积分是两次单变量积分。
①当f(x,y)在有界闭区域内连续,那么二重积分和二次积分相等,对开区域或无界区域这关系不衡成立。
②二次积分不一定能二重积分,如:对[0,1]*[0,1]区域,对任意x∈[0,1]可定义一个对y连续的函数g(x,y)(y∈[0,1])∫g(x,y)dy=1,那么∫dx∫g(x,y)dy有意义,一般地∫∫g(x,y)dσ没意义。
③可以二重积分不一定能二次积分,区域S={(x,y)|x>=1,|y|。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式