利用拉格朗日中值定理证明不等式:|arctana-arctanb|≤|a-b|.

考试资料网
2023-04-19 · 百度认证:赞题库官方账号
考试资料网
向TA提问
展开全部
【答案】:由于(arctanx)'=1/(1+x^2),故在[a.b]上对arctanx使用拉格朗日中值定理,
得arctanb-arctana=(b-a)/(1+ξ^2),加绝对值得|arctana-arctanb|=|a-b|/|1+ξ^2|,
由于1/|1+ξ^2|≤1,
故|arctana-arctanb|≤|a-b|.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式