函数可积不一定有原函数,对吗?
展开全部
设F(x)是f(x)的一个原函数,即F'(x)=f(x)
由于可导必连续,既然F(x)可导,它一定连续.
一个区间上,可积,则他的变限积分在这个区间上是连续的,变限积分加上任意常数c,就是这个函数的不定积分,就是所有原函数的可能性。既然变限积分是连续的,加c之后自然也是连续的。
扩展资料:
函数可积不一定存在原函数。按条件的强度来说,可积是个较弱的条件,因为可积的充分条件是“在闭区间上有界且只有有限个间断点。” 可积的必要条件就是函数有界。
函数可积,只能知道他的变限积分所构造的函数连续。连续是比可积稍强的条件,也就是说,闭区间连续一定可积,且必有原函数,而且该函数的原函数一定可导。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询