求多边形边数的公式
多边形边数公式:n边形的边=(内角和÷180°)+2。
多边形边数公式
由三条或三条以上的线段首尾顺次连接所组成的平面图形叫做多边形。按照不同的标准,多边形可以分为正多边形和非正多边形、凸多边形及凹多边形等。
多边形内角和
1、n边形的内角和等于(n-2)x180;注:此定理适用所有的平面多边形,包括凸多边形和平面凹多边形。
2、在平面多边形中,边数相等的凸多边形和凹多边形内角和相等。但是空间多边形不适用。可逆用:n边形的边=(内角和÷180°)+2;过n边形一个顶点有(n-3)条对角线;n边形共有n×(n-3)÷2=对角线;
3、n边形过一个顶点引出所有对角线后,把多边形分成n-2个三角形。
推论:
1、任意凸形多边形的外角和都等于360°;
2、多边形对角线的计算公式:n边形的对角线条数等于1/2·n(n-3);
3、在平面内,各边相等,各内角也都相等的多边形叫做正多边形。(两个条件必须同时满足)反例:矩形(各内角相等,各边不一定相等);菱形(各边相等,各内角不一定相等)。
扩展资料:
多边形对角线和边数关系:
1、从n边形的一个顶点可以引出(n-3)条对角线。(n-3)是因为n边形共有n条边,从一个顶点出发,除了自己这个顶点和与自己相邻的两个顶点不能连成对角线,一共三条线,所以减去3,为(n-3)。
2、n边形一共有n(n-3)/2条对角线。n(n-3)/2是因为从一个顶点出发可以引出(n-3)条对角线,而n边形共有n条边,所以为n(n-3),但其中又有正好一半儿是重复的,所以就再除以2,为n(n-3)/2。