
已知a,b,c∈R+,且a+b+c=1,求证:(1/a-1)(1/b-1)(1/c-1)>=8
2个回答
展开全部
∵(1/a-1)
=(1-a)/a
=(a+b+c-a)/a
=(b+c)/a
又(√b-√c)^2≥0
b+c≥2√(bc)
∴(1/a-1)=(b+c)/a≥2√(bc)/a
同理
(1/b-1)≥2√(ac)/b
(1/c-1)≥2√(ab)/c
故(1/a-1)*(1/b-1)*(1/c-1)≥[2√(bc)/a]*[2√(ac)/b]*[2√(ab)/c]
=8 √[(a^2)*(b^2)8(c^2)]/(abc)
=8
=(1-a)/a
=(a+b+c-a)/a
=(b+c)/a
又(√b-√c)^2≥0
b+c≥2√(bc)
∴(1/a-1)=(b+c)/a≥2√(bc)/a
同理
(1/b-1)≥2√(ac)/b
(1/c-1)≥2√(ab)/c
故(1/a-1)*(1/b-1)*(1/c-1)≥[2√(bc)/a]*[2√(ac)/b]*[2√(ab)/c]
=8 √[(a^2)*(b^2)8(c^2)]/(abc)
=8
参考资料: 百度
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询