
急求过程!在三角形ABC中,求证(sinA)^2+(sinB)^2+(sinc)^2<=9/4
1个回答
展开全部
sin^2A+sin^2B+sin^2C
=(1-cosA)/2 +(1-cosB)/2 +(1-cos^2C)
=2-cos(A+B)cos(A-B)-cos^2C
=2+cosCsoc(A-B)-cos^2C<=2+|cosC|-cos^C=-(|cosC|-1/2)^2+9/4
当cosC=1/2时(及A=B=C=60度)有最大值9/4 ,
所以(sinA)^2+(sinB)^2+(sinc)^2<=9/4
=(1-cosA)/2 +(1-cosB)/2 +(1-cos^2C)
=2-cos(A+B)cos(A-B)-cos^2C
=2+cosCsoc(A-B)-cos^2C<=2+|cosC|-cos^C=-(|cosC|-1/2)^2+9/4
当cosC=1/2时(及A=B=C=60度)有最大值9/4 ,
所以(sinA)^2+(sinB)^2+(sinc)^2<=9/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询