求椭圆方程
椭圆x²/a²+y²/b²=1,e=√3/2,右焦点到直线x+y+√6=0的距离为2√3。(1)求椭圆方程(2)过点M(0,-1)...
椭圆x²/a²+y²/b²=1,e=√3/2,右焦点到直线x+y+√6=0的距离为2√3。 (1)求椭圆方程 (2)过点M(0,-1)做直线L交椭圆于AB两点,交x轴于N,满足NA向量=-7/5NB向量,求直线L的方程
展开
展开全部
(1)、右焦点为(c,0),
——》(c+0+√6)/√(1+1)=2√3,
——》c=√6,
——》a=c/e=2√2,b=√(a^2-c^2)=√2,
——》椭圆方程为:x^2/8+y^2/2=1;
(2)、设直线的斜率为k,则直线方程为:y+1=kx,N点为(1/k,0),
——》x^2/8+(kx-1)^2/2=1,
整理得:(4k^2+1)x^2-8kx-4=0,
——》xa+xb=8k/(4k^2+1),xa*xb=-4/(4k^2+1),
向量NA=-7/5NB,
——》xa-1/k=-7/5*(xb-1/k),即5xa+7xb=12/k,
——》xa=28k/(4k^2+1)-6/k,xb=6/k-20k/(4k^2+1),
——》xa*xb=[28k/(4k^2+1)-6/k][6/k-20k/(4k^2+1)]=-4/(4k^2+1),
整理得:8k^4+k^2-9=(k^2-1)(8k^2+9)=0,
——》k=+-1,
即直线的方程为:y+1=+-x。
——》(c+0+√6)/√(1+1)=2√3,
——》c=√6,
——》a=c/e=2√2,b=√(a^2-c^2)=√2,
——》椭圆方程为:x^2/8+y^2/2=1;
(2)、设直线的斜率为k,则直线方程为:y+1=kx,N点为(1/k,0),
——》x^2/8+(kx-1)^2/2=1,
整理得:(4k^2+1)x^2-8kx-4=0,
——》xa+xb=8k/(4k^2+1),xa*xb=-4/(4k^2+1),
向量NA=-7/5NB,
——》xa-1/k=-7/5*(xb-1/k),即5xa+7xb=12/k,
——》xa=28k/(4k^2+1)-6/k,xb=6/k-20k/(4k^2+1),
——》xa*xb=[28k/(4k^2+1)-6/k][6/k-20k/(4k^2+1)]=-4/(4k^2+1),
整理得:8k^4+k^2-9=(k^2-1)(8k^2+9)=0,
——》k=+-1,
即直线的方程为:y+1=+-x。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
东莞大凡
2024-11-19 广告
2024-11-19 广告
板格标定棋盘是我们东莞市大凡光学科技有限公司在精密光学测量领域的重要工具。它采用高精度设计,确保每一个格板都达到严格的校准标准。通过使用板格标定棋盘,我们能够有效地对光学测量系统进行校准,从而提升测量的准确性和可靠性。这一工具在光学仪器的研...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询