三角形ABC的三条内角平分线相较于点O,过点O作OE垂直于BC于点E.
1个回答
展开全部
【1】
证明:∵∠AFO=∠FBC+∠ACB=1/2∠ABC+∠ACB,
∴∠AOF=180°-(∠DAC+∠AF0)
=180°-[1/2∠BAC+1/2∠ABC+∠ACB]
=180°-[1/2(∠BAC+∠ABC)+∠ACB]
=180°-[1/2(180°-∠ACB)+∠ACB]
=180°-[90°+1/2∠ACB]
=90°-1/2∠ACB,
∴∠BOD=∠AOF=90°-1/2∠ACB,
又∵在直角△OCE中,∠COE=90°-∠OCD=90°-1/2∠ACB,
∴∠BOD=∠COE.
【2】
(2)解:∵AB=17,AC=8,BC=15,
∴AC2+BC2=289,
AB2=289,
∴AC2+BC2=AB2,
∴△ABC为直角三角形,
∴EO=[8+15−17]/2=3.
证明:∵∠AFO=∠FBC+∠ACB=1/2∠ABC+∠ACB,
∴∠AOF=180°-(∠DAC+∠AF0)
=180°-[1/2∠BAC+1/2∠ABC+∠ACB]
=180°-[1/2(∠BAC+∠ABC)+∠ACB]
=180°-[1/2(180°-∠ACB)+∠ACB]
=180°-[90°+1/2∠ACB]
=90°-1/2∠ACB,
∴∠BOD=∠AOF=90°-1/2∠ACB,
又∵在直角△OCE中,∠COE=90°-∠OCD=90°-1/2∠ACB,
∴∠BOD=∠COE.
【2】
(2)解:∵AB=17,AC=8,BC=15,
∴AC2+BC2=289,
AB2=289,
∴AC2+BC2=AB2,
∴△ABC为直角三角形,
∴EO=[8+15−17]/2=3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询