已知函数f(x)=-x3+ax2+b(a,b∈R).(Ⅰ)若a=1,函数f(x)的图象能否总在直线y=b的下方?说明理由

已知函数f(x)=-x3+ax2+b(a,b∈R).(Ⅰ)若a=1,函数f(x)的图象能否总在直线y=b的下方?说明理由;(Ⅱ)若函数f(x)在(0,2)上是增函数,求a... 已知函数f(x)=-x3+ax2+b(a,b∈R).(Ⅰ)若a=1,函数f(x)的图象能否总在直线y=b的下方?说明理由;(Ⅱ)若函数f(x)在(0,2)上是增函数,求a的取值范围;(Ⅲ)设x1,x2,x3为方程f(x)=0的三个根,且x1∈(-1,0),x2∈(0,1),x3∈(-∞,-1)∪(1,+∞),求证:a>1或a<-1. 展开
 我来答
DTZS9127
2014-10-05 · TA获得超过339个赞
知道答主
回答量:110
采纳率:0%
帮助的人:125万
展开全部
解答:(Ⅰ)解:当a=1时,f(x)=-x3+x2+b,
因为f(-1)=b+2>b,
所以,函数f(x)的图象不能总在直线y=b的下方.
(Ⅱ)解:法一、
由f(x)=-x3+ax2+b,得f(x)=-3x2+2ax,
令f(x)=-3x2+2ax=0,解得x=0或x=
2
3
a

①当a<0时,由f(x)>0,解得
2
3
a<x<0

所以f(x)在(
2
3
a,0)
上是增函数,与题意不符,舍去;
②当a=0时,由f(x)=-3x2≤0,
所以f(x)在R上是减函数,与题意不符,舍去;
③当a>0时,由f(x)>0,解得0<x<
2
3
a

所以f(x)在(0,
2
3
a)
上是增函数,
又f(x)在(0,2)上是增函数,所以
2
3
a≥2
,解得a≥3,
综上,a的取值范围为[3,+∞).
法二、
由f(x)=-x3+ax2+b,得f(x)=-3x2+2ax,
要使函数f(x)在(0,2)上是增函数,
则需f(x)=-3x2+2ax≥0对任意x∈(0,2)恒成立,
即2ax≥3x2对任意x∈(0,2)恒成立,
也就是a
3
2
x
对任意x∈(0,2)恒成立,
因为y=
3
2
x
在x∈(0,2)上为增函数,所以a
3
2
×2
=3.
所以,a的取值范围为[3,+∞).
(Ⅲ)证明:因为方程f(x)=-x3+ax2+b=0最多只有3个根,
由题意,方程在区间(-1,0)内仅有一根,
所以f(-1)?f(0)=b(1+a+b)<0,
方程在区间(0,1)内仅有一根,
所以f(0)?f(1)=b(-1+a+b)<0,
当b>0时,由b(1+a+b)<0得,1+a+b<0,即a<-b-1,
由b(-1+a+b)<0得,-1+a+b<0,即a<-b+1,
因为-b-1<-b+1,所以a<-b-1<-1,即a<-1;
当b<0时,由b(1+a+b)<0得,1+a+b<0,即a>-b-1,
由b(-1+a+b)<0得,-1+a+b<0,即a>-b+1,
因为-b-1<-b+1,所以a>-b+1>1,即a>1;
当b=0时,因为f(0)=0,所以f(x)=0有一根0,
这与题意不符.
∴a>1或a<-1.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式