关于线性代数的,求帮助 50
A为n阵,|A|=0,M11≠0,方程AX=0,求X的通解这道题我看的解析中一步没看懂,求解释,A伴随阵的每一列都是解,然后因为要找线性无关解,所以第一列中由于A11不为...
A为n阵,|A|=0,M11≠0,方程AX=0,求X的通解
这道题我看的解析中一步没看懂,求解释,A伴随阵的每一列都是解,然后因为要找线性无关解,所以第一列中由于A11不为0,所以第一列做通解,这步我没看懂,求详解
还有一个问题
怎样理解,m个向量和n维中m和n的关系?公式也有,但是始终记得不牢,一般求通解,线性关系,都是用初等行变换,然后看列来和秩进行判断,有什么好的方法把这种关系记得更深刻?
顺便求私信联系方式,有问题还能再找您 展开
这道题我看的解析中一步没看懂,求解释,A伴随阵的每一列都是解,然后因为要找线性无关解,所以第一列中由于A11不为0,所以第一列做通解,这步我没看懂,求详解
还有一个问题
怎样理解,m个向量和n维中m和n的关系?公式也有,但是始终记得不牢,一般求通解,线性关系,都是用初等行变换,然后看列来和秩进行判断,有什么好的方法把这种关系记得更深刻?
顺便求私信联系方式,有问题还能再找您 展开
2014-12-14
展开全部
由 AA* = |A|E = 0
所以 A* 的列向量都是AX=0的解
特别是 A* 的第k列 (Ak1,...,Akn)' 是AX=0 的非零解.
又由 |A|=0 , 所以 r(A)<n.
而 Aki≠0, 所以 r(A)>=n-1
故 r(A) = n-1.
所以 AX=0 的基础解系含 n - r(A) = n - (n-1) = 1 个解向量.
所以 (Ak1,...,Akn)' 是AX=0 的基础解系.
所以 AX=0的通解为 c (Ak1,...,Akn)', c为任意常数.
所以 A* 的列向量都是AX=0的解
特别是 A* 的第k列 (Ak1,...,Akn)' 是AX=0 的非零解.
又由 |A|=0 , 所以 r(A)<n.
而 Aki≠0, 所以 r(A)>=n-1
故 r(A) = n-1.
所以 AX=0 的基础解系含 n - r(A) = n - (n-1) = 1 个解向量.
所以 (Ak1,...,Akn)' 是AX=0 的基础解系.
所以 AX=0的通解为 c (Ak1,...,Akn)', c为任意常数.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询