如图,在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,联结EF、EC、BF、

如图,在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,联结EF、EC、BF、CF.(1)四边形AECD的形状是;(... 如图,在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,联结EF、EC、BF、CF. (1)四边形AECD的形状是 ;(2)若CD=2,求CF的长. 展开
 我来答
汛亥a
推荐于2016-09-08 · TA获得超过132个赞
知道答主
回答量:198
采纳率:85%
帮助的人:61.7万
展开全部
解:(1)四边形AECD的形状是 平行四边形      
(2)∵四边形AECD是平行四边形,∴AE=CD=2,
∵E是AB的中点,∴AE=EB=2,AB=4.    
∵四边形AECD是平行四边形,∴EC∥AD,
∴∠BEC=∠A=60°.
∴EC=4,BC= .
∴ AD=EC=4,          
∵F是AD的中点,∴AF=2,
∴△AEF是等边三角形,∴EF=2                   
∴∠FEC=60°
可证△ECF≌△ECB               
∴FC=BC= .  

(1)四边形AECD为平行四边形,理由为:由E为AB的中点,得到AE=BE= AB,又AB=2CD,即CD= AB,可得出DC=AE,又DC平行于AE,利用一组对边平行且相等的四边形为平行四边形可得出AECD为平行四边形;
(2)由AECD为平行四边形且DC=2,得到AE=2,由E为AB的中点,得到AE=BE=2,可得出AB=4,又根据平行四边形的对边平行,得到EC与AD平行,再利用两直线平行同位角相等,由∠A为60°得到∠CEB为60°,在直角三角形EBC中,求出∠ECB为30°,利用30°角所对的直角边等于斜边的一半,根据EB的长求出EC的长,利用勾股定理求出BC的长,再由平行四边形的对边相等可得出AD=CE,求出AD的长,又F为AD的中点,求出AF=2,可得出三角形AFE为等边三角形,根据等边三角形的性质得到∠AEF为60°,又∠CEB为60°,利用平角的定义求出∠FEC为60°,即∠FEC=∠BEC,再由EF=EB,及公共边EC,利用SAS可得出三角形CFE与三角形CBE全等,根据全等三角形的对应边相等可得出CF=CB,由CB的长即可得到CF的长.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式