已知二次函数f(x)=ax2+bx+1(a,b∈R,a>0),设方程f(x)=x的两个实数根为x1和x2.(1)如果x1<2<

已知二次函数f(x)=ax2+bx+1(a,b∈R,a>0),设方程f(x)=x的两个实数根为x1和x2.(1)如果x1<2<x2<4,设二次函数f(x)的对称轴为x=x... 已知二次函数f(x)=ax2+bx+1(a,b∈R,a>0),设方程f(x)=x的两个实数根为x1和x2.(1)如果x1<2<x2<4,设二次函数f(x)的对称轴为x=x0,求证:x0>-1;(2)如果|x1|<2,|x2-x1|=2,求b的取值范围. 展开
 我来答
夏至ebetk
推荐于2018-04-17 · 超过53用户采纳过TA的回答
知道答主
回答量:120
采纳率:100%
帮助的人:49.8万
展开全部
解答:解:(1)设g(x)=f(x)-x=ax2+(b-1)x+1,
∵a>0,
∴由条件x1<2<x2<4,
得g(2)<0,g(4)>0.即
4a+2b-1<0
16a+4b-3>0

由可行域可得
b
a
<2
,∴x0=-
b
2a
>-1

(2)由g(x)=ax2+(b-1)x+1=0,知x1x2=
1
a
>0
,故x1与x2同号.
①若0<x1<2,则x2-x1=2(负根舍去),
∴x2=x1+2>2.
g(2)<0
g(4)>0
,即
4a+2b-1<0
16a+4b-3>0
?b<
1
4

②若-2<x1<0,则x2=-2+x1<-2(正根舍去),
g(-2)<0
g(-4)>0
,即
4a-2b+3<0
16a-4b+5>0
?b>
7
4

综上,b的取值范围为b<
1
4
b>
7
4
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式