x∧2/(1+e∧x)不定积分可以求吗 不会哎 求帮忙
1个回答
展开全部
不定积分不行,初等函数不能表达。如果是定积分。对称区间积分,还能做。
举例:
令x=-u,则dx=-du,u:1--->-1
∫[-1-->1] x²/(1+e^x)dx
=-∫[1-->-1] u²/(1+e^(-u))du
=∫[-1-->1] u²e^u/(e^u+1)du
积分变量可以随便换字母
=∫[-1-->1] x²e^x/(e^x+1)dx
则得到:∫[-1-->1] x²/(1+e^x)dx=∫[-1-->1] x²e^x/(e^x+1)dx
因此
∫[-1-->1] x²/(1+e^x)dx
=1/2[ ∫[-1-->1] x²/(1+e^x)dx + ∫[-1-->1] x²e^x/(e^x+1)dx ]
=1/2∫[-1-->1] [ x²/(1+e^x)+x²e^x/(e^x+1) ]dx
=1/2∫[-1-->1] x² dx
=(1/6)x³ |[-1-->1]
=(1/6)-(-1/6)
=1/3
举例:
令x=-u,则dx=-du,u:1--->-1
∫[-1-->1] x²/(1+e^x)dx
=-∫[1-->-1] u²/(1+e^(-u))du
=∫[-1-->1] u²e^u/(e^u+1)du
积分变量可以随便换字母
=∫[-1-->1] x²e^x/(e^x+1)dx
则得到:∫[-1-->1] x²/(1+e^x)dx=∫[-1-->1] x²e^x/(e^x+1)dx
因此
∫[-1-->1] x²/(1+e^x)dx
=1/2[ ∫[-1-->1] x²/(1+e^x)dx + ∫[-1-->1] x²e^x/(e^x+1)dx ]
=1/2∫[-1-->1] [ x²/(1+e^x)+x²e^x/(e^x+1) ]dx
=1/2∫[-1-->1] x² dx
=(1/6)x³ |[-1-->1]
=(1/6)-(-1/6)
=1/3
追问
这是我同学他不会做 给我做的 我也不知道他哪来的题目 纠结了我一晚上 我连英语都没看 唉 郁闷
谢谢了哈 既然不能做 那我就不纠结了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询