(1997?河北)命题:如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足
(1997?河北)命题:如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于点F,则OE=OF.对上述命题证...
(1997?河北)命题:如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于点F,则OE=OF.对上述命题证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO.又∵AG⊥EB,∴∠1+∠3=90°=∠2+∠3.∴∠1=∠2∴Rt△BOE≌Rt△AOF.∴OE=OF问题:对上述命题,若点E在AC的延长线上,AG⊥EB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,其它条件不变(如图2),则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明现由.
展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询