(1)已知a、b、c是△ABC的三边,且满足a2+b2+c2-6a-8b-10c+50=0,请你根据此条件判断这个三角形的形状,
(1)已知a、b、c是△ABC的三边,且满足a2+b2+c2-6a-8b-10c+50=0,请你根据此条件判断这个三角形的形状,并说明理由.(2)在△ABC中,三条边的长...
(1)已知a、b、c是△ABC的三边,且满足a2+b2+c2-6a-8b-10c+50=0,请你根据此条件判断这个三角形的形状,并说明理由.(2)在△ABC中,三条边的长分别为a、b、c,且a=x2-1,b=x2+1,c=2x(x>1,且x为整数),请你判断这个三角形的形状,并说明理由.
展开
展开全部
(1)△ABC是直角三角形,理由如下:
∵a2+b2+c2-6a-8b-10c+50=0,
∴a2-6a+9+b2-8b+16+c2-10c+25=0,
即(a-3)2+(b-4)2+(c-5)2=0,
∴a=3,b=4,c=5,
∵32+42=52,即a2+b2=c2,
∴△ABC是直角三角形;
(2)△ABC是直角三角形,理由如下:
∵a=x2-1,b=x2+1,c=2x,
∴a2+c2=(x2-1)2+(2x)2=x4-2x2+1+4x2=x4+2x2+1,
b2=(x2+1)2=x4+2x2+1,
∴a2+c2=b2,
∴△ABC为直角三角形.
∵a2+b2+c2-6a-8b-10c+50=0,
∴a2-6a+9+b2-8b+16+c2-10c+25=0,
即(a-3)2+(b-4)2+(c-5)2=0,
∴a=3,b=4,c=5,
∵32+42=52,即a2+b2=c2,
∴△ABC是直角三角形;
(2)△ABC是直角三角形,理由如下:
∵a=x2-1,b=x2+1,c=2x,
∴a2+c2=(x2-1)2+(2x)2=x4-2x2+1+4x2=x4+2x2+1,
b2=(x2+1)2=x4+2x2+1,
∴a2+c2=b2,
∴△ABC为直角三角形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询