
求式子的微分方程满足所给初始条件的特解:cosydx+(1+e^-x)sinydy=0,x=0y=
特解:
cosydx+(1+e^-x)sinydy=0
e^xcosydx+(e^x+1)sinydy=0
e^xcosydx+e^xsinydy=-sinydy
cosyde^x-e^xdcosy=-sinydy
de^x/cosy-e^xdcosy/cosy^2=-sinydy/cosy^2
d(e^x/cosy)=-d(1/cosy)
通解e^x/cosy=-1/cosy+C
即e^x=-1+Ccosy
y|x=0 =π/4
1=-1+√2C/2
√2C=4
C=2√2
特解e^x=-1+2√2cosy
约束条件:
微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。
若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。
cosydx+(1+e^-x)sinydy=0
e^xcosydx+(e^x+1)sinydy=0
e^xcosydx+e^xsinydy=-sinydy
cosyde^x-e^xdcosy=-sinydy
de^x/cosy-e^xdcosy/cosy^2=-sinydy/cosy^2
d(e^x/cosy)=-d(1/cosy)
通解e^x/cosy=-1/cosy+C
即e^x=-1+Ccosy
y|x=0 =π/4
1=-1+√2C/2
√2C=4
C=2√2
特解e^x=-1+2√2cosy
扩展资料
求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。
后来的发展表明,能够求出通解的情况不多,在实际应用中所需要的多是求满足某种指定条件的特解。当然,通解是有助于研究解的属性的,但是人们已把研究重点转移到定解问题上来。