代数余子式前面的符号是怎么确定的??

 我来答
郝姐说
高能答主

2021-10-27 · 感谢大家的关注!
郝姐说
采纳数:424 获赞数:14365

向TA提问 私信TA
展开全部

-1的(i+j)次方,i和j分别为行列式的行和列,若为奇数时,前面为-1,偶数时,则为1。

在n阶行列式中,把元素a所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素ai的余子式,记作M,将余子式M再乘以-1的o+e次幂记为A,A叫做元素a的代数余子式

一个元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。

定义

在n阶行列式D中划去任意选定的k行、k列后,余下的元素按原来顺序组成的n-k阶行列式M,称为行列式D的k阶子式A的余子式。如果k阶子式A在行列式D中的行和列的标号分别为i1,i2,…,ik和j1,j2,…,jk。则在A的余子式M前面添加符号:

带有代数符号的余子式称为代数余子式,计算元素的代数余子式时,首先要注意不要漏掉代数余子式所带的代数符号。

代数余子式是相对于行列式而言的。它的两个概念,一是相对于元素而言的,二是相对于子式而言的。而它的两个部分,一部分是相当于子式的余子式,另一部分是相当于“代数”性质的符号性质。

因此第一个需要明确的相关概念,就是行列式的子式。在n阶行列式中任选m行m列,其中m<=n,得到的行列式,就称为原行列式的子式。单选一个元素也能构成原行列式的一个子列,即取1行1列,得到一个1阶行列式,就是原行列式的一个1阶子式。

而被选取的m阶子列除外的那些元素,构成了一个(m-n)阶子式,就称为这个m阶子列的余子式。这就是子列的余子式的概念,而当子式为1阶子式时,即该子式只有一个元素时,得到的余子式也可以称为是这个元素的余子式,这就是余子式的第二个概念。

高等代数都是先学元素的余子式,再学子式的余子式的。

加上“代数”两字的代数余子式,是余子式加上符号性质的概念。首先是元素的代数余子式符号问题,就是该元素的行号列号的和做为指数的-1的乘方。比如第三行第四列的元素a34的余子式的符号性质,就是(-1)的(3+4)次方,即符号性质是负的。

这时余子式和代数余子式的符号是相反的。需要注意的是,余子式的值未必是正数,如果余子式的值是负的,那么代数余子式的值就反而是正的。

然后是子式的代数余子式的符号问题,它是子式的所有行号的和加上所有列号的和做为指数的-1的乘方。比如由第1,3行和第2,5列构成的子式,它的代数余子式的符号性质就是(-1)的(1+3)+(2+5)次方,即符号性质是负的。同样的,余子式的符号为负时,代数余子式的符号就反而是正的。

综上,代数余子式的求法是,取元素或子式中各元素所在的行和列之外的所有元素构成余子式,然后再由元素在原行列式中的行号和列号的和,或子式中的所有行列在原行列式中的行号、列号的和,决定其符号性质。

这个和是偶数时,代数余子式的符号性质是正的,但它的值未必是正数,这个和是奇数时,代数余子式的符号性质是负的,但它的值也未必是负数。

forguo
2014-12-17 · TA获得超过2036个赞
知道小有建树答主
回答量:862
采纳率:50%
帮助的人:135万
展开全部
-1的(i+j)次方,
i和j分别为行列式的行和列,
若为奇数时,前面为-1
偶数时,则为1
希望有用,望采纳 谢谢
更多追问追答
追问
我意思是这个符号是怎么来的?
追答
代数 余子式,是在余子式的基础上
加上 前面的公式
书上有写的,怎么 来的真不知道
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
大神宫在此
2019-07-18
知道答主
回答量:1
采纳率:0%
帮助的人:713
展开全部
a1p1*a2p2*...aipi*...*anpn,然后将aipi挪到最后,a1p1*a2p2*...anpn*aipi,首先挪动之后逆序数的奇偶性不变,然后去掉aipi项,则为a1p1*a2p2*a3p3*...*anpn,假设一串数12345的逆序数为0,12354的逆序数为1,12453的逆序数为2,由此类推,1 2 3 4 ... n i 的逆序数为n-i,p1,p2,p3...pn,pi的逆序数为n-pi,则在去掉aipi项以后,逆序数的改变为n-i+n-pi,所以符号为(-1)2n-i-pi=(-1)i+pi,一项是这样,其他所有项也是这样.
还有一种方法就是把第i行j列的元素挪到第n行第n列,一共需要挪n-i+n-j次,所以符号为(-1)I+j
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lyp931046897
2014-12-17 · TA获得超过1698个赞
知道小有建树答主
回答量:1767
采纳率:0%
帮助的人:573万
展开全部
-1的m+n次方,m,n分别是那个元素的行和列的序号
追问
我意思是这个符号是怎么来的?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
乐与鹤为邻4
2014-12-17
知道答主
回答量:34
采纳率:0%
帮助的人:4.3万
展开全部
书上有啊
追问
木有啊
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式