高数不定积分,∫1/(xln(x+1))dx
∫1/(xln(x+1))dx的不定积分是x^2/2*ln(x-1)-x^2/4-x/2-ln(x-1)/2+C。
∫xln(x-1)dx
=1/2x²ln(1+x)-1/2[x²中备/2-x+ln(1+x)]+C∫xln(x-1)dx
=x^2/2*ln(x-1)-∫x^2/2ln(x-1)'前培州dx
=x^2/2*ln(x-1)-∫x^2/2(x-1)dx
=x^2/2*ln(x-1)-∫(x^2-x)/2(x-1)dx-∫x/2(x-1)dx
=x^2/2*ln(x-1)-∫x/2dx-∫x/2(x-1)dx
=x^2/2*ln(x-1)-x^2/4-∫x/2(x-1)dx
=x^2/2*ln(x-1)-x^2/4-∫(x-1)/2(x-1)dx-∫1/2(x-1)dx
=x^2/2*ln(x-1)-x^2/4-∫1/2dx-∫1/2(x-1)d(x-1)
=x^2/2*ln(x-1)-x^2/4-x/2-∫1/2(x-1)d(x-1)
=x^2/2*ln(x-1)-x^2/4-x/2-ln(x-1)/2+C
所以∫1/(xln(x+1))dx的不定积分是x^2/2*ln(x-1)-x^2/4-x/2-ln(x-1)/2+C。
扩展资料:
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,慧蔽其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C