已知函数f(x)=x2-6x+4lnx+a(x>0),若方程f(x)=0有两个不同的实根,则实数a的值为( )A.a=5或
已知函数f(x)=x2-6x+4lnx+a(x>0),若方程f(x)=0有两个不同的实根,则实数a的值为()A.a=5或a=8-4ln2B.a=5或a=8+4ln2C.a...
已知函数f(x)=x2-6x+4lnx+a(x>0),若方程f(x)=0有两个不同的实根,则实数a的值为( )A.a=5或a=8-4ln2B.a=5或a=8+4ln2C.a=-5或a=8-4ln2D.a=5或a=8-4ln3
展开
1个回答
展开全部
f′(x)=2x+
?6=
(x>0),
由
得0<x<1或x>2;由
得1<x<2
∴f(x)在(0,1)和(2,+∞)上单调递增,f(x)在(1,2)上递减
知y极大=f(1)=a-5,y极小=f(2)=4ln2-8+a,
f(x)=0有两个不同的实数根,则
或
解得a=5或a=8-4ln2
故当a=5或a=8-4ln2时f(x)=0有两个不同的实数根.
故选A.
4 |
x |
2(x?1)(x?2) |
x |
由
|
|
∴f(x)在(0,1)和(2,+∞)上单调递增,f(x)在(1,2)上递减
知y极大=f(1)=a-5,y极小=f(2)=4ln2-8+a,
f(x)=0有两个不同的实数根,则
|
|
解得a=5或a=8-4ln2
故当a=5或a=8-4ln2时f(x)=0有两个不同的实数根.
故选A.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询