已知数列{an}的前n项和是Sn,且满足Sn=2an-1.(1)求数列{an}的通项公式;(2)若数列{bn}满足an?bn=2n-
已知数列{an}的前n项和是Sn,且满足Sn=2an-1.(1)求数列{an}的通项公式;(2)若数列{bn}满足an?bn=2n-1,求数列{bn}的前n项和Tn....
已知数列{an}的前n项和是Sn,且满足Sn=2an-1.(1)求数列{an}的通项公式;(2)若数列{bn}满足an?bn=2n-1,求数列{bn}的前n项和Tn.
展开
展开全部
(1)∵Sn=2an-1,
∴S1=2a1-1,
∴a1=1.
当n≥2时,an=Sn-Sn-1=2an-1-(2an-1-1)=2an-2an-1,
∴an=2an-1,
∴数列{an}是以1为首项,2为公比的等比数列,
∴an=2n-1.
(2)∵an?bn=2n-1,
∴bn=
=
,
∴Tn=b1+b2+…+bn=1+
+
+…+
,①
Tn=
+
+…+
+
,②
①-②得:
Tn=1+1+
+…+
-
=1+1+
+
+…+
-
=1+
-
∴S1=2a1-1,
∴a1=1.
当n≥2时,an=Sn-Sn-1=2an-1-(2an-1-1)=2an-2an-1,
∴an=2an-1,
∴数列{an}是以1为首项,2为公比的等比数列,
∴an=2n-1.
(2)∵an?bn=2n-1,
∴bn=
2n?1 |
an |
2n?1 |
2n?1 |
∴Tn=b1+b2+…+bn=1+
3 |
2 |
5 |
22 |
2n?1 |
2n?1 |
1 |
2 |
1 |
2 |
3 |
22 |
2n?3 |
2n?1 |
2n?1 |
2n |
①-②得:
1 |
2 |
2 |
22 |
2 |
2n?1 |
2n?1 |
2n |
=1+1+
1 |
2 |
1 |
22 |
1 |
2n?2 |
2n?1 |
2n |
=1+
[1?(
| ||
1?
|
2n?1 |
2n |