已知:如图,AB是半圆O的直径,C为AB上一点,AC为半圆O′的直径,BD切半圆O′于点D,CE⊥AB交半圆O于点F
已知:如图,AB是半圆O的直径,C为AB上一点,AC为半圆O′的直径,BD切半圆O′于点D,CE⊥AB交半圆O于点F.(1)求证:BD=BE;(2)若两圆半径的比为3:2...
已知:如图,AB是半圆O的直径,C为AB上一点,AC为半圆O′的直径,BD切半圆O′于点D,CE⊥AB交半圆O于点F.(1)求证:BD=BE;(2)若两圆半径的比为3:2,试判断∠EBD是直角、锐角还是钝角?并给出证明.
展开
展开全部
解答:证明:(1)连接DO′,
∵BD切半圆O′于点D,
∴∠O'DB=90°,
∴△BDO′是直角三角形,
设大圆半径R小圆半径r,
则BD2=O′B2-DO′2
即为BD2=(2R-r)2-r2,
整理得:BD2=4R2-4Rr
∵CE垂直AB,可用射影定理得EB2=AB?BC,
代入数值得:BE2=(2R-2r)×2R,
整理得:BE2=4R2-4Rr,
∴BD2=BE2,
∵BD>0,BE>0,
∴BD=BE;
(2)∠EBD是锐角,
∵两圆半径的比为3:2,
∴AB:AC=3:2.
设AB=3k,则AC=2k,
∴BC=AB-AC=k,
∴O′B=O′C+BC=2k,
在R t△O′DB中,
sin∠O′BD=
,
∵sin30°=
∴∠O′BD<30°,
∵CE2=AC?BC=2k?k,
进而求得EC=
k.
在Rt△ECB中,
tan∠EBC=
=
,
∵tan60°=
,
∴∠EBC<60°.
∴∠EBD=∠EBC+∠O′BD<60°+30°=90°.
∴∠EBD是锐角.
∵BD切半圆O′于点D,
∴∠O'DB=90°,
∴△BDO′是直角三角形,
设大圆半径R小圆半径r,
则BD2=O′B2-DO′2
即为BD2=(2R-r)2-r2,
整理得:BD2=4R2-4Rr
∵CE垂直AB,可用射影定理得EB2=AB?BC,
代入数值得:BE2=(2R-2r)×2R,
整理得:BE2=4R2-4Rr,
∴BD2=BE2,
∵BD>0,BE>0,
∴BD=BE;
(2)∠EBD是锐角,
∵两圆半径的比为3:2,
∴AB:AC=3:2.
设AB=3k,则AC=2k,
∴BC=AB-AC=k,
∴O′B=O′C+BC=2k,
在R t△O′DB中,
sin∠O′BD=
1 |
3 |
∵sin30°=
1 |
2 |
∴∠O′BD<30°,
∵CE2=AC?BC=2k?k,
进而求得EC=
2 |
在Rt△ECB中,
tan∠EBC=
EC |
BC |
2 |
∵tan60°=
3 |
∴∠EBC<60°.
∴∠EBD=∠EBC+∠O′BD<60°+30°=90°.
∴∠EBD是锐角.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询