一道难题,求学霸指点,谢谢

 我来答
匿名用户
2014-11-09
展开全部
如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是AB^上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、且DG=GH=HE
(1)求证:四边形OGCH是平行四边形;
(2)当点C在AB上运动时,在CD,CG,DG中,是否存在长度不变的线段?若存在,请求出该线段的长度
(3)求证:CD^2+3CH^2的定值
作HF⊥CD于点F
则△DHF∽△DEC
∴DF/DC=DH/DE=2/3
∴DF=2/3CD
∴CF=1/3CD
∵HF²=HC²-CF²=DH²-DF ²,DH=2
∴CH²-(1/3CD)²=2²-(2/3CD)²
∴3CH²=12-CD²
∴CD ²+3CH²=12
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式