若0<x1<x2<1,则( )A.ex2-ex1>lnx2-lnx1B.ex2-ex1<lnx2-lnx1C.x2ex1>x1ex2D.x2ex1<x1ex
若0<x1<x2<1,则()A.ex2-ex1>lnx2-lnx1B.ex2-ex1<lnx2-lnx1C.x2ex1>x1ex2D.x2ex1<x1ex2...
若0<x1<x2<1,则( )A.ex2-ex1>lnx2-lnx1B.ex2-ex1<lnx2-lnx1C.x2ex1>x1ex2D.x2ex1<x1ex2
展开
1个回答
展开全部
令f(x)=ex+lnx,
f′(x)=ex+
,
当0<x<1时,f′(x)>0,
∴f(x)在(0,1)上为增函数,
∵0<x1<x2<1,
∴ex1+lnx1<ex2+lnx2,
即ex2?ex1>lnx1?lnx2.
由此可知选项A,B不正确.
令g(x)=
,
g′(x)=
,
当0<x<1时,g′(x)<0.
∴g(x)在(0,1)上为减函数,
∵0<x1<x2<1,
∴
>
,
即x2ex1>x1ex2.
∴选项C正确而D不正确.
故选:C.
f′(x)=ex+
1 |
x |
当0<x<1时,f′(x)>0,
∴f(x)在(0,1)上为增函数,
∵0<x1<x2<1,
∴ex1+lnx1<ex2+lnx2,
即ex2?ex1>lnx1?lnx2.
由此可知选项A,B不正确.
令g(x)=
ex |
x |
g′(x)=
xex?ex |
x2 |
当0<x<1时,g′(x)<0.
∴g(x)在(0,1)上为减函数,
∵0<x1<x2<1,
∴
ex1 |
x1 |
ex2 |
x2 |
即x2ex1>x1ex2.
∴选项C正确而D不正确.
故选:C.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询