已知△ABC中,AB=AC=10cm,∠B=∠C,BC=8cm,点D为AB的中点
(1)点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动。①若点Q的运动速度与点P的运动速度相等时,经过1秒后,△BPD与△CQP...
(1)点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动。
①若点Q的运动速度与点P的运动速度相等时,经过1秒后,△BPD与△CQP是否全等?,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时能够使△BPD与△CQP全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过多长时间点P与点Q第一次在△ABC的哪条边上相遇 展开
①若点Q的运动速度与点P的运动速度相等时,经过1秒后,△BPD与△CQP是否全等?,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时能够使△BPD与△CQP全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过多长时间点P与点Q第一次在△ABC的哪条边上相遇 展开
2个回答
展开全部
(1)①全等
∵AB=AC
∴∠B=3C
∵BP=3×1=2,CQ=3×1=3
∴BP=CQ
∵PC=BC-BP=8-3=5
D是AB的中点即BD=1/2AB=5
∴PC=BD
在△BPD和△CPQ中
BP=CQ
BD=PC
∠B=∠C
∴△BPD≌△CPQ
②设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;
则可知PB=3tcm,PC=8-3tcm,CQ=xtcm,
据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等;
①当BD=PC且BP=CQ时,8-3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;
②BD=CQ,BP=PC时,5=xt且3t=8-3t,解得:x= 15/4;
故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为 15/4cm/s时,
能够使△BPD与△CQP全等.
(2)设 两点相遇时间为 、t s
由②题可得 V = 15 / 4 cm/s
又因为点P与点Q起始相隔BC = 8 cm
所以 3t+(10+10+8-8)= t×15 / 4 即 3t + 20 = 15t / 4
解得 t= 80/3 s
即 点P 走啦 3 × 80/3 = 80 cm (两个三角周长加上24 cm)
从点B开始算,8 + 10 + 6 = 24 ,即点P在边AB上被点Q追上。
所以 经过80/3 s 时间点P与点Q第一次在△ABC的AB边上相遇。
∵AB=AC
∴∠B=3C
∵BP=3×1=2,CQ=3×1=3
∴BP=CQ
∵PC=BC-BP=8-3=5
D是AB的中点即BD=1/2AB=5
∴PC=BD
在△BPD和△CPQ中
BP=CQ
BD=PC
∠B=∠C
∴△BPD≌△CPQ
②设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;
则可知PB=3tcm,PC=8-3tcm,CQ=xtcm,
据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等;
①当BD=PC且BP=CQ时,8-3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;
②BD=CQ,BP=PC时,5=xt且3t=8-3t,解得:x= 15/4;
故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为 15/4cm/s时,
能够使△BPD与△CQP全等.
(2)设 两点相遇时间为 、t s
由②题可得 V = 15 / 4 cm/s
又因为点P与点Q起始相隔BC = 8 cm
所以 3t+(10+10+8-8)= t×15 / 4 即 3t + 20 = 15t / 4
解得 t= 80/3 s
即 点P 走啦 3 × 80/3 = 80 cm (两个三角周长加上24 cm)
从点B开始算,8 + 10 + 6 = 24 ,即点P在边AB上被点Q追上。
所以 经过80/3 s 时间点P与点Q第一次在△ABC的AB边上相遇。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询