
如图所示,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)经过点A(-1,0),B(3,0)其顶点为D,连接BD
如图所示,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)经过点A(-1,0),B(3,0)其顶点为D,连接BD,点P是线段BD上一个动点(不与B,D重合),过点...
如图所示,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)经过点A(-1,0),B(3,0)其顶点为D,连接BD,点P是线段BD上一个动点(不与B,D重合),过点P作y轴的垂线,垂足为E连接BE.(1)求抛物线的解析式,并写出顶点D的坐标;(2)如果点P的坐标为(x,y),△PBE的面积为S,求S与x的函数关系式,写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,过点P作x轴的垂线,垂足为F,连接EF在这条抛物线上是否存在一点Q,使得直线EF为线段PQ的垂直平分线?若存在,请求出Q点的坐标;若不存在,请说明理由.
展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载