每级的末尾不管有几个0,()其它数位有一个0或者几个0,都(),这道题怎么做? 10
每级的末尾不管有几个0,(都不读),其它数位有一个0或者几个 0,都(只读一个零)。
数字的分类:
数分实数和虚数,虚数表示为i^2=-1。实数又分有理数和无理数,无理数为无限不循环小数,如√2,π。无理数中还有一类数,叫超越数。超越数是无法用根号表示的数,如著名的常数π与e。有理数则是可以表现为分数的数。而有理数还分正和负。
扩展资料:
数字的起源:
数字的起源有两种说法,一是说起源于我国,史书上说中天皇君兄弟十三人,号曰天灵,其中一人发明了数字,继而又发明了天干、地支。发明数字:零、一、二、三、四、五、六、七、八、九、十、廿、卅、卌、百、千、万。
亦有另一种说法,数字是发源于古印度,并不是阿拉伯人发明创造的。数字后来被阿拉伯人用于经商而掌握,经改进,并传到了西方。
西方人由于首先接触到阿拉伯人使用过这些数据,便误以为是他们发明的,所以便将这些数字称为阿拉伯数字,造成了这一历史的误会。
后来,随着在世界各地的普遍传播,大家都都认同了“阿拉伯数字”这个说法,使世界上很多地方的人都误认为是阿拉伯人发明的数字,实际上是阿拉伯人最早开始广泛使用数字。
传到欧洲后,欧洲人非常喜爱这套方便适用的记数符号,尽管后来人们知道了事情的真相,但由于习惯了,就一直没有改正过来。
数字是古代印度人在生产和实践中逐步创造出来的。
在古代印度,进行城市建设时需要设计和规划,进行祭祀时需要计算日月星辰的运行,于是,数学计算就产生了。大约在公元前3000多年,印度河流域居民的数字就比较先进,而且采用了十进位的计算方法。
到公元前三世纪,印度出现了整套的数字,但在各地区的写法并不完全一致,其中最有代表性的是婆罗门式:这一组数字在当时是比较常用的。
它的特点是从“1”到“9”每个数都有专字。现代数字就是由这一组数字演化而来。在这一组数字中,还没有出现“0”(零)的符号。
“0”这个数字是到了笈多王朝(公元320—550年)时期才出现的。公元四世纪完成的数学著作《太阳手册》中,已使用“0”的符号,当时只是实心小圆点“·”。后来,小圆点演化成为小圆圈“0”。
这样,一套从“1”到“0”的数字就趋于完善了。这是古代印度人民对世界文化的巨大贡献。
参考资料来源:百度百科--数字