如何进行有效的小学数学教学设计
1个回答
展开全部
教学设计(Instructional Design,简称ID),亦称教学系统设计,是面向教学系统、解决教学问题的一种特殊的设计活动,是运用现代学习与教学心理学、传播学、教学媒体论等相关的理论与技术,分析教学中的问题和需要,设计解决方法,试行解决方法,评价试行结果并在评价基础上改进设计的一个系统过程。教学设计不仅是一门科学,也是一门艺术。作为一门科学,它必须遵循一定的教育、教学规律;作为一门艺术,它需要融入设计者诸多的个人经验,并根据教材和学生的特点进行再创造,同时灵活、巧妙地运用教学设计的方法与策略。那么,如何进行小学数学教学设计,才能使其不但具备设计的一般性质,同时还遵循教学的基本规律,让其更加充分地体现教学设计者的教育智慧呢?
美国著名的教学设计研究专家马杰(R.Mager)指出:教学设计依次由三个基本问题组成。首先是“我去哪里”,即教学目标的制订;接着是“我如何去那里”,包括学习者起始状态的分析、教学内容的分析与组织、教学方法与教学媒介的选择;最后是“我怎么判断我已到达了那里”,即教学的评价。教学设计是由目标设计、达成目标的诸要素的分析与设计、教学效果的评价所构成的有机整体。所以,要进行有效的小学数学教学设计,必须围绕以上三个基本问题展开。
一、确定恰当的教学目标
教学目标既是教学活动的出发点,也是预先设定的可能达到的结果。小学数学教学目标不仅包括知识和技能方面的要求,也包括数学思考、解决问题以及学生对数学的情感与态度等方面的要求。对目标的不同理解会形成不同的教学设计,从而形成不同水平的课堂教学。例如,同样的“确定位置”一课,由于两位教师确定了不同的教学目标,因而形成了两种不同水平的教学设计。
一位教师对“确定位置”一课的教学目标是这样确定的:“掌握用‘数对’确定位置的方法,并能在方格纸上用‘数对’确定物体的位置。”基于这一目标,教师给每个学生发了一张写有第几列、第几行的卡片,让学生手拿卡片到前边站好,然后按照卡片上的要求找到相应的位置。在教师的指导下,通过学生汇报是怎样找到位置的,最后达成了教学目标。从这节课的目标确定与教学过程设计来看,认知性教学目标是主体,尽管教学设计质朴,也考虑了学生原有的知识基础与生活经验,但却造成了学生的单一认知发展,而缺少良好的情感体验及运用知识解决实际问题的机会。
另一位教师对“确定位置”一课的教学目标是这样确定的:“使学生能在具体的情境中,探索确定位置的方法,说出某一物体的位置;使学生能在方格纸上用‘数对’确定物体的位置;让学生在具体情境中感受数学与生活的密切联系,自主发现和解决数学问题,并从中获得成功的体验,树立学习数学的信心。”在该目标的指导下,教师首先让学生尝试用最简捷的数学方法描述班级中一名同学的位置,然后把同学们各种不同的表示方法加以分类比较,在此基础上得出不同的表示方法的共同特点──都是用“第3组、第2个”描述这位同学在班级中的位置的。此时教师指出,其实这名同学的位置还可以用(3,2)来表示,这种方法在数学中就叫“数对”。在师生共同研究了“数对”的读写方法之后,教师设计了一个游戏活动──教师用手指一个学生,请这个学生用“数对”说出自己的位置,其他学生判断正误;教师说“数对”,请坐在相应位置的学生起立,其他学生用手势判断对错。最后教师还设计了一个有趣的砸蛋游戏,把代表每个学生位置的“数对”输入电脑,同学们随机叫停,这位幸运的同学就到前边,在正确用“数对”说出想砸的金蛋或银蛋在方格纸上的位置后就可以砸蛋了,砸中后,电脑上会出现一句祝福的话。通过这样的教学设计,不但使学生感受到用“数对”确定物体位置的简捷性、唯一性,同时还体会到数学与生活是密切联系的。在这样的过程中,学生既掌握了知识,又享受了成功,体验了快乐。
通过对以上两个教学设计的对比,我们真切地感受到,要确定恰当的教学目标就必须正确地处理好课程标准、教材和学生水平三者之间的关系,同时关注认知、情感与动作技能等目标的不同层次。布卢姆以学习者的外显行为作为目标分类的基点,以行为的复杂程度作为划分目标的依据,提出了认知领域教育目标的六级分类──知识、领会、运用、分析、综合、评价。克拉斯沃尔等人于1964年提出了情感教学目标分类,并根据价值内化的程度将其分为五级:接受、注意,反应,价值化,价值观的组织,价值或价值系统的性格化。辛普森将动作技能依次分为知觉、定向、在指导下做出反应、机械化动作、复杂的外显反应、适应、创作。三位教育家的目标分类为我们确定教学目标提供了基本依据,在进行小学数学教学设计时,要对这三个目标领域统筹加以考虑,并把较高水平的目标当做影响内容的主题和根本目的来看待,只有这样才能确定出恰当的教学目标。
二、合理分析与组织教学要素
(一) 分析学生情况
学生是学习的主体,要想有针对性地进行教学设计,必须进行学情分析,应着重分析学习者的起始能力、已经形成的背景知识和技能及学习者是怎样进行思维的。
1.学习者起始能力的诊断
加涅对学习结果的分类及其关于学习条件的思想,为学习者起始能力的诊断提供了理论基础及诊断的基本思路。加涅将学习的结果分成了智慧技能、认知策略、言语信息、动作技能及态度五类。根据智慧技能学习的不同复杂程度,他又在该范畴中分出若干个亚类,即辨别、概念、规则和高级规则(解决问题)。辨别是概念学习的基础,概念是规则学习的基础,运用若干个简单的规则是解决问题获得高级规则的基础。如“三角形的面积”一课,学生需要通过实验,自己总结与概括三角形的面积计算公式,并运用公式解决简单的实际问题。这一内容属于规则学习的范畴,而规则学习的前提条件是获得运用有关概念的能力。三角形的面积=底×高÷2,这个公式中包括了“三角形”“面积”“等于”“底”“高”“乘”“除”七个概念,如果这七个概念中的任何一个概念没有掌握,规则学习都将无法进行。同时,学生必须掌握“剪”“拼”“转化”等策略,否则将不能自主地推导出三角形的面积计算公式。因此,准确地诊断学习者的起始能力是进行有效教学设计的基本前提。
2.学习者背景知识的分析
学生在学习数学知识时,总要与背景知识发生联系,以有关知识──包括正规和非正规学习获得的知识来理解知识,重构新知识。小学数学教师对学生背景知识的分析,不仅包括对学生已具备的有利于新知识获得的旧知识的分析,还包括对不利于新知识获得的背景知识的分析。
一位教师根据学生背景知识的不同,对“质数与合数”一课做了三种不同的教学设计。
设计一:在“送教下乡”活动中,根据农村中心校学生已经掌握了自然数、分类、奇数、偶数、约数等背景知识,首先让学生把班级同学的学号数──1~16根据奇数与偶数进行分类。接着让学生找出2~16各数的所有约数,并根据约数个数的特征把这些数分成两类。在此基础上,让学生尝试概括这两类数的特征,进而在教师的不断追问下,师生共同概括出什么叫质数,什么叫合数。
设计二:在校际交流活动中,根据县实验小学学生已经掌握的背景知识,首先让学生把班级同学的学号数──1~59根据奇数与偶数进行分类。接着让学生找出1~59各数的所有约数,并根据约数个数的特征把这些数进行分类(应该分成三类)。在分类的基础上,让学生通过独立尝试概括、讨论交流、汇报辩论,揭示出质数、合数的概念,明确1既不是质数也不是合数。
设计三:在“省优秀教师教学成果汇报会”上,根据班级学生中有三分之一左右的学生通过不同的渠道已经知道了质数、合数的概念(尽管学生知道概念,但并没有真正理解概念),教师让学生阅读教材,理解质数、合数的概念,在师生的共同辨析争论下,使全体学生真正理解质数、合数的内涵与外延。
通过对“质数与合数”一课三种不同教学设计的分析,我们认识到,正确地分析学习者的背景知识,是进行有效教学设计的重要基础。
3.学习者是怎样进行思维的
埃德·拉宾诺威克兹在《思维·学习·教学》一书中说:“作为教师,我们教儿童。既然我们教儿童,那我们就要了解儿童怎样思维,儿童怎样学习……也许,我们只是自以为了解了他们。”的确如此,很多时候我们以为了解学生,其实不然。许多小学数学教师在进行教学设计时,更多关注的是怎样进行教学,而很少考虑学生是怎样学习的,学生是如何思维的。一位教师对“长方体和正方体的体积”一课是这样设计的:首先复习体积单位并出示相应的1立方厘米、1立方分米、1立方米的正方体木块,然后让学生估计一个比较大的长方体的体积大约是多少。接下来让学生用正方体的小木块摆大小不同的各种长方体,并记录得到的数据。在此基础上让学生自主概括长方体的体积计算公式。在实际进行教学时,学生并没有按照设计者的思路估计这个较大的长方体的体积大约是多少,而是说这个长方体的长大约是30厘米、25厘米、50厘米,宽大约是20厘米、30厘米、40厘米,高大约是40厘米、50厘米、55厘米等。在记录数据的过程中,同样没有按照设计者的思路记录长方体的长、宽、高及体积各是多少,而是直接记录了小木块的个数。造成教学设计与实际教学差异的主要原因就是设计者缺乏对学生是如何进行思维的基本判断。因此,小学数学教师在进行教学设计时,不但要对学习者起始能力进行诊断,对学习者背景知识进行分析,还应关注学生是如何思维的。另外,对学生学习态度、学习兴趣的分析对达成教学目标也十分重要,也是进行教学设计时不能忽视的内容。
美国著名的教学设计研究专家马杰(R.Mager)指出:教学设计依次由三个基本问题组成。首先是“我去哪里”,即教学目标的制订;接着是“我如何去那里”,包括学习者起始状态的分析、教学内容的分析与组织、教学方法与教学媒介的选择;最后是“我怎么判断我已到达了那里”,即教学的评价。教学设计是由目标设计、达成目标的诸要素的分析与设计、教学效果的评价所构成的有机整体。所以,要进行有效的小学数学教学设计,必须围绕以上三个基本问题展开。
一、确定恰当的教学目标
教学目标既是教学活动的出发点,也是预先设定的可能达到的结果。小学数学教学目标不仅包括知识和技能方面的要求,也包括数学思考、解决问题以及学生对数学的情感与态度等方面的要求。对目标的不同理解会形成不同的教学设计,从而形成不同水平的课堂教学。例如,同样的“确定位置”一课,由于两位教师确定了不同的教学目标,因而形成了两种不同水平的教学设计。
一位教师对“确定位置”一课的教学目标是这样确定的:“掌握用‘数对’确定位置的方法,并能在方格纸上用‘数对’确定物体的位置。”基于这一目标,教师给每个学生发了一张写有第几列、第几行的卡片,让学生手拿卡片到前边站好,然后按照卡片上的要求找到相应的位置。在教师的指导下,通过学生汇报是怎样找到位置的,最后达成了教学目标。从这节课的目标确定与教学过程设计来看,认知性教学目标是主体,尽管教学设计质朴,也考虑了学生原有的知识基础与生活经验,但却造成了学生的单一认知发展,而缺少良好的情感体验及运用知识解决实际问题的机会。
另一位教师对“确定位置”一课的教学目标是这样确定的:“使学生能在具体的情境中,探索确定位置的方法,说出某一物体的位置;使学生能在方格纸上用‘数对’确定物体的位置;让学生在具体情境中感受数学与生活的密切联系,自主发现和解决数学问题,并从中获得成功的体验,树立学习数学的信心。”在该目标的指导下,教师首先让学生尝试用最简捷的数学方法描述班级中一名同学的位置,然后把同学们各种不同的表示方法加以分类比较,在此基础上得出不同的表示方法的共同特点──都是用“第3组、第2个”描述这位同学在班级中的位置的。此时教师指出,其实这名同学的位置还可以用(3,2)来表示,这种方法在数学中就叫“数对”。在师生共同研究了“数对”的读写方法之后,教师设计了一个游戏活动──教师用手指一个学生,请这个学生用“数对”说出自己的位置,其他学生判断正误;教师说“数对”,请坐在相应位置的学生起立,其他学生用手势判断对错。最后教师还设计了一个有趣的砸蛋游戏,把代表每个学生位置的“数对”输入电脑,同学们随机叫停,这位幸运的同学就到前边,在正确用“数对”说出想砸的金蛋或银蛋在方格纸上的位置后就可以砸蛋了,砸中后,电脑上会出现一句祝福的话。通过这样的教学设计,不但使学生感受到用“数对”确定物体位置的简捷性、唯一性,同时还体会到数学与生活是密切联系的。在这样的过程中,学生既掌握了知识,又享受了成功,体验了快乐。
通过对以上两个教学设计的对比,我们真切地感受到,要确定恰当的教学目标就必须正确地处理好课程标准、教材和学生水平三者之间的关系,同时关注认知、情感与动作技能等目标的不同层次。布卢姆以学习者的外显行为作为目标分类的基点,以行为的复杂程度作为划分目标的依据,提出了认知领域教育目标的六级分类──知识、领会、运用、分析、综合、评价。克拉斯沃尔等人于1964年提出了情感教学目标分类,并根据价值内化的程度将其分为五级:接受、注意,反应,价值化,价值观的组织,价值或价值系统的性格化。辛普森将动作技能依次分为知觉、定向、在指导下做出反应、机械化动作、复杂的外显反应、适应、创作。三位教育家的目标分类为我们确定教学目标提供了基本依据,在进行小学数学教学设计时,要对这三个目标领域统筹加以考虑,并把较高水平的目标当做影响内容的主题和根本目的来看待,只有这样才能确定出恰当的教学目标。
二、合理分析与组织教学要素
(一) 分析学生情况
学生是学习的主体,要想有针对性地进行教学设计,必须进行学情分析,应着重分析学习者的起始能力、已经形成的背景知识和技能及学习者是怎样进行思维的。
1.学习者起始能力的诊断
加涅对学习结果的分类及其关于学习条件的思想,为学习者起始能力的诊断提供了理论基础及诊断的基本思路。加涅将学习的结果分成了智慧技能、认知策略、言语信息、动作技能及态度五类。根据智慧技能学习的不同复杂程度,他又在该范畴中分出若干个亚类,即辨别、概念、规则和高级规则(解决问题)。辨别是概念学习的基础,概念是规则学习的基础,运用若干个简单的规则是解决问题获得高级规则的基础。如“三角形的面积”一课,学生需要通过实验,自己总结与概括三角形的面积计算公式,并运用公式解决简单的实际问题。这一内容属于规则学习的范畴,而规则学习的前提条件是获得运用有关概念的能力。三角形的面积=底×高÷2,这个公式中包括了“三角形”“面积”“等于”“底”“高”“乘”“除”七个概念,如果这七个概念中的任何一个概念没有掌握,规则学习都将无法进行。同时,学生必须掌握“剪”“拼”“转化”等策略,否则将不能自主地推导出三角形的面积计算公式。因此,准确地诊断学习者的起始能力是进行有效教学设计的基本前提。
2.学习者背景知识的分析
学生在学习数学知识时,总要与背景知识发生联系,以有关知识──包括正规和非正规学习获得的知识来理解知识,重构新知识。小学数学教师对学生背景知识的分析,不仅包括对学生已具备的有利于新知识获得的旧知识的分析,还包括对不利于新知识获得的背景知识的分析。
一位教师根据学生背景知识的不同,对“质数与合数”一课做了三种不同的教学设计。
设计一:在“送教下乡”活动中,根据农村中心校学生已经掌握了自然数、分类、奇数、偶数、约数等背景知识,首先让学生把班级同学的学号数──1~16根据奇数与偶数进行分类。接着让学生找出2~16各数的所有约数,并根据约数个数的特征把这些数分成两类。在此基础上,让学生尝试概括这两类数的特征,进而在教师的不断追问下,师生共同概括出什么叫质数,什么叫合数。
设计二:在校际交流活动中,根据县实验小学学生已经掌握的背景知识,首先让学生把班级同学的学号数──1~59根据奇数与偶数进行分类。接着让学生找出1~59各数的所有约数,并根据约数个数的特征把这些数进行分类(应该分成三类)。在分类的基础上,让学生通过独立尝试概括、讨论交流、汇报辩论,揭示出质数、合数的概念,明确1既不是质数也不是合数。
设计三:在“省优秀教师教学成果汇报会”上,根据班级学生中有三分之一左右的学生通过不同的渠道已经知道了质数、合数的概念(尽管学生知道概念,但并没有真正理解概念),教师让学生阅读教材,理解质数、合数的概念,在师生的共同辨析争论下,使全体学生真正理解质数、合数的内涵与外延。
通过对“质数与合数”一课三种不同教学设计的分析,我们认识到,正确地分析学习者的背景知识,是进行有效教学设计的重要基础。
3.学习者是怎样进行思维的
埃德·拉宾诺威克兹在《思维·学习·教学》一书中说:“作为教师,我们教儿童。既然我们教儿童,那我们就要了解儿童怎样思维,儿童怎样学习……也许,我们只是自以为了解了他们。”的确如此,很多时候我们以为了解学生,其实不然。许多小学数学教师在进行教学设计时,更多关注的是怎样进行教学,而很少考虑学生是怎样学习的,学生是如何思维的。一位教师对“长方体和正方体的体积”一课是这样设计的:首先复习体积单位并出示相应的1立方厘米、1立方分米、1立方米的正方体木块,然后让学生估计一个比较大的长方体的体积大约是多少。接下来让学生用正方体的小木块摆大小不同的各种长方体,并记录得到的数据。在此基础上让学生自主概括长方体的体积计算公式。在实际进行教学时,学生并没有按照设计者的思路估计这个较大的长方体的体积大约是多少,而是说这个长方体的长大约是30厘米、25厘米、50厘米,宽大约是20厘米、30厘米、40厘米,高大约是40厘米、50厘米、55厘米等。在记录数据的过程中,同样没有按照设计者的思路记录长方体的长、宽、高及体积各是多少,而是直接记录了小木块的个数。造成教学设计与实际教学差异的主要原因就是设计者缺乏对学生是如何进行思维的基本判断。因此,小学数学教师在进行教学设计时,不但要对学习者起始能力进行诊断,对学习者背景知识进行分析,还应关注学生是如何思维的。另外,对学生学习态度、学习兴趣的分析对达成教学目标也十分重要,也是进行教学设计时不能忽视的内容。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询