如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)为双曲线上的一点,Q为坐标

如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、... 如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B。 (1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?若存在,请求出点Q的坐标,若不存在,请说明理由; (3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,设点Q的横坐标为n,求平行四边形OPCQ周长(周长用n的代数式表示),并写出其最小值。 展开
 我来答
春哥3xLTp6
推荐于2016-09-10 · 超过48用户采纳过TA的回答
知道答主
回答量:100
采纳率:100%
帮助的人:94.3万
展开全部
解:(1)设正比例函数解析式为y=kx,将点M(-2,-1)坐标代入得k=
所以正比例函数的解析式为
同样可得,反比例函数解析式为
(2)当点Q在直线DO上运动时,设点Q的坐标为 , 
于是

  所以有 ,解得
  所以点Q的坐标为
(3)因为四边形OPCQ是平行四边形,所以OP=CQ,OQ=PC,
而点P(-1,-2)是定点,所以OP的长也是定长,
所以要求平行四边形OPCQ周长的最小值就只需求OQ的最小值,
因为点Q在第一象限中双曲线上,所以点Q的坐标为
由勾股定理可得
所以当 时, 有最小值4,
又因为OQ为正值,所以OQ与 同时取得最小值,
所以OQ有最小值2,
由勾股定理得OP= ,所以平行四边形OPCQ周长的最小值是

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式