如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,M,N分别是AB,PC的中点.(1)求二面角P-CD-B的大小

如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,M,N分别是AB,PC的中点.(1)求二面角P-CD-B的大小;(2)求证:平面MND⊥平面PCD;(3... 如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,M,N分别是AB,PC的中点.(1)求二面角P-CD-B的大小;(2)求证:平面MND⊥平面PCD;(3)求点P到平面MND的距离. 展开
 我来答
star演奏9hM冡
2014-12-15 · TA获得超过113个赞
知道答主
回答量:109
采纳率:0%
帮助的人:130万
展开全部
(1)∵四边形ABCD为正方形,∴CD⊥AD,
∵PA⊥平面ABCD,CD?平面ABCD,∴PA⊥CD,
又∵PD、CD是平面PCD内的相交直线,
∴CD⊥平面PCD,∵PD?平面PCD,可得CD⊥PD,
因此,∠PDA就是二面角P-CD-B的平面角
∵Rt△PAD中,PA=AD=2,∴∠PDA=45°,
即二面角P-CD-B的大小为45°;
(2)∵PA⊥平面ABCD,AB⊥AD,∴AB、AD、AP两两互相垂直,
如图所示,分别以AB、AD、AP所在直线为x轴、y轴和z轴建立空间直角坐标系,可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),
M(1,0,0),N(1,1,1),
MN
=(0,1,1),
ND
=(-1,1,-1),
PD
=(0,2,-2)
m
=(x,y,z)是平面MND的一个法向量,
可得
m
?
MN
=y+z=0
m
?
ND
=-x+y-z=0
,取y=-1,得x=-2,z=1,
m
=(-2,-1,1)是平面MND的一个法向量,同理可得
n
=(0,1,1)是平面PCD的一个法向量,
m
?
n
=-2×0+(-1)×1+1×1=0,∴
m
n

即平面MND的法向量与平面PCD的法向量互相垂直,可得平面MND⊥平面PCD;
(3)由(2)得
m
=(-2,-1,1)是平面MND的一个法向量,
PD
=(0,2,-2),得
PD
?
m
=0×(-2)+2×(-1)+(-2)×1=-4,
∴点P到平面MND的距离d=
|
PD
?
m
|
|m|
=
4
4+1+1
=
2
6
3

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式