设函数f(x)=lnx-x2+ax(a∈R).(Ⅰ) 求函数f(x)的单调区间;(Ⅱ) 已知A(x1,f(x1)),B(x2

设函数f(x)=lnx-x2+ax(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)已知A(x1,f(x1)),B(x2,f(x2))(x1≠x2)是函数f(x)在x∈[... 设函数f(x)=lnx-x2+ax(a∈R).(Ⅰ) 求函数f(x)的单调区间;(Ⅱ) 已知A(x1,f(x1)),B(x2,f(x2))(x1≠x2)是函数f(x)在x∈[1,+∞)的图象上的任意两点,且满足f(x1)?f(x2)x1?x2<2,求a的最大值;(Ⅲ) 设g(x)=xe1-x,若对于任意给定的x0∈(0,e],方程f(x)+1=g(x0)在(0,e]内有两个不同的实数根,求a的取值范围.(其中e是自然对数的底数) 展开
 我来答
绝↗殇1259
2014-11-12 · TA获得超过226个赞
知道答主
回答量:105
采纳率:100%
帮助的人:111万
展开全部
(Ⅰ) f′(x)=
1
x
?2x+a=
?2x2+ax+1
x

由f'(x)=0,得-2x2+ax+1=0,该方程的判别式△=a2+8>0,
可知方程-2x2+ax+1=0有两个实数根
a2+8
4
,又x>0,故取x=
a+
a2+8
4

x∈(0,
a+
a2+8
4
)
时,f'(x)>0,函数f(x)单调递增;当x∈(
a+
a2+8
4
,+∞)
时,f'(x)<0,函数f(x)单调递减.
则函数f(x)的单调递增区间是(0,
a+
a2+8
4
)
;递减区间是(
a+
a2+8
4
,+∞)

(Ⅱ)不妨设x1>x2≥1,不等式
f(x1)?f(x2)
x1?x2
<2
转化为f(x1)-2x1<f(x2)-2x2
令φ(x)=f(x)-2x,可知函数φ(x)在区间[1,+∞)上单调递减,故φ'(x)=f'(x)-2≤0恒成立,
1
x
?2x+a?2≤0
恒成立,即a≤2x?
1
x
+2
恒成立.
当x∈[1,+∞)时,函数y=2x?
1
x
+2
单调递增,故当x=1时,函数y=2x?
1
x
+2
取得最小值3,则实数a的取值范围是a≤3,则实数a的最大值为3.
(Ⅲ)g'(x)=(1-x)e1-x,当x∈(0,1)时,g'(x)>0,g(x)是增函数;当x∈(1,e)时,g'(x)<0,g(x)是减函数.可得函数g(x)在区间(0,e]的值域为(0,1].
令F(x)=f(x)+1,则F′(x)=f′(x)=
?2x2+ax+1
x

由F'(x)=0,结合(Ⅰ)可知,方程F'(x)=0在(0,∞)上有一个实数根x3,若x3≥e,则F(x)在(0,e]上单调递增,不合题意,
可知F'(x)=0在(0,e]有唯一的解x3
a+
a2+8
4
,且F(x)在(0,
a+
a2+8
4
)
上单调递增;在(
a+
a2+8
4
,+∞)
上单调递减.
因为?x0∈(0,e],方程f(x)+1=g(x0)在(0,e]内有两个不同的实数根,所以F(e)≤0,且F(x)max>1.
由F(e)≤0,即lne-e2+ae+1≤0,解得a≤e?
2
e

由F(x)max=f(x3)+1>1,即lnx3?
x
2
3
+ax3+1>1
lnx3?
x
2
3
+ax3>0

因为?2
x
2
3
+ax3+1=0
,所以a=2x3?
1
x3
,代入lnx3?
x
2
3
+ax3>0
,得lnx3+
x
2
3
?1>0

令h(x)=lnx+x2-1,可知函数h(x)在(0,e]上单调递增,而h(1)=0,则h(x3)>h(1)=0,
所以1<x3<e,而a=2x3?
1
x3
在1<x3<e时单调递增,可得1<a<2e?
1
e

综上所述,实数a的取值范围是(1,e?
2
e
]
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式