特征向量与特征值已知,怎么求原矩阵

 我来答
钰潇
高粉答主

2019-06-30 · 关注我不会让你失望
知道小有建树答主
回答量:313
采纳率:100%
帮助的人:14万
展开全部

如果矩阵可对角化并且知道所有的特征值及对应的特征向量,那么可以用这些信息来还原矩阵 因为Ap1=p1λ1, ... Apn=pnλn A[p1,...,pn]=[p1,...,pn]diag{λ1,...,λn} A=[p1,...,pn]diag{λ1,...,λn}[p1,...,pn]^{-1}

以三阶矩阵为例:

设A为三阶矩阵,它的三个特征值为m1,m2,m3,其对应的线性无关的特征向量为a1,a2,a3,则Aai=miai(i=1,2,3),所以A(a1,a2,a3)=(m1a1,m2a2,m3a3)=(a1,a2,a3)diag{m1,m2,m3}

令P=(a1,a2,a3),B=diag{m1,m2,m3},则AP=PB,由a1,a2,a3线性无关可知P可逆,从而A=PBP^(-1)

特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。

设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。

非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。

扩展资料:

在求原矩阵时判断矩阵可对角化的充要条件

矩阵可对角化有两个充要条件:

1、矩阵有n个不同的特征向量;

2、特征向量重根的重数等于基础解系的个数。对于第二个充要条件,则需要出现二重以上的重特征值可验证(一重相当于没有重根)。

若矩阵A可对角化,则其对角矩阵Λ的主对角线元素全部为A的特征值,其余元素全部为0。

参考资料:百度百科-特征向量

参考资料:百度百科-特征值

迈杰
2024-11-30 广告
GWAS,即全基因组关联分析,是一种强大的遗传学研究方法。它通过对大规模群体的DNA变异进行系统性扫描,寻找与特定性状(如疾病易感性、药物反应等)相关联的遗传变异。在迈杰转化医学研究(苏州)有限公司,我们利用先进的GWAS技术,挖掘疾病相关... 点击进入详情页
本回答由迈杰提供
Dilraba学长
高粉答主

2019-10-13 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411051

向TA提问 私信TA
展开全部

如果矩阵可对角化并且知道所有的特征值及对应的特征向量,那么可以用这些信息来还原矩阵 因为Ap1=p1λ1, ... Apn=pnλn A[p1,...,pn]=[p1,...,pn]diag{λ1,...,λn} A=[p1,...,pn]diag{λ1,...,λn}[p1,...,pn]^{-1}

特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。

扩展资料

如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν

其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。其中特征值中存在的复数项,称为一个“丛(pencil)”。

若B可逆,则原关系式可以写作  ,也即标准的特征值问题。当B为非可逆矩阵(无法进行逆变换)时,广义特征值问题应该以其原始表述来求解。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
robin_2006
2009-04-26 · TA获得超过3.9万个赞
知道大有可为答主
回答量:1.3万
采纳率:79%
帮助的人:8459万
展开全部
特征量作为列向量组成一个可逆矩阵P,相应的特征值作为对角线元素组成一个对角矩阵B,则AP=PB,所以A=PB(P逆),入18题

如果矩阵A对称,则已知条件中的特征向量不必全部给出,根据不同特征值对应的特征向量是正交的,可以由已知特征值的特征向量求出未知特征值对应的特征向量,变成18题的形式,如19、20题
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2023-05-20 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1624万
展开全部

简单分析一下,详情如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2017-12-07
展开全部
如果矩阵可对角化并且知道所有的特征值及对应的特征向量,那么可以用这些信息来还原矩阵 因为Ap1=p1λ1, ... Apn=pnλn A[p1,...,pn]=[p1,...,pn]diag{λ1,...,λn} A=[p1,...,pn]diag{λ1,...,λn}[p1,...,pn]^{-1}
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式