MATLAB中训练LM算法的BP神经网络

我用MATLAB仿真基于LM算法的BP神经网络训练,为什么学习率、激发函数等参数都不改变的情况下,每次训练结果的误差及训练次数都不一样呢?是否因为是初始阈值等产生的?要怎... 我用MATLAB仿真基于LM算法的BP神经网络训练,为什么学习率、激发函数等参数都不改变的情况下,每次训练结果的误差及训练次数都不一样呢?是否因为是初始阈值等产生的?要怎么样才能解决这个问题?另外,若改变隐层节点数,也要求在同样的条件下进行网络性能对比,要怎么做?谢谢
谢谢 煌兮诸火的答复,
问题找到了,可能是归一化公式premnmx中min和max的问题,很多文献中都说测试数据的归一化也用训练数据归一化时得出的min和max值,用了tramnmx导致测试数据输出结果错的离谱。在现在的程序中不使用tramnmx,而是在训练时,用premnmx归一化,训练网络的误差达到1e-5,再对测试数据用premnmx进行归一化得出另一组min和max值,通过训练好的网络进行结果运算后,再用postmnmx(A2,mint,maxt)【mint和maxt为测试数据归一化时得出的最小最大值;A2为测试输入通过网络得出的输出】对输出进行处理后,得出的结果与测试集的期望输出比较,但误差并未达到1e-5,但是误差绝对值都小于1,不知有何问题?
1、训练数据回代入网络测试,比上面说的另外测试数据测试误差要小很多,虽然也没有达到1e-5这么小,不知为何?
2、[net,tr]=train(net,Pn,Tn); %训练后,网络误差达到1e-5停止
A=sim(net,Pn);
E=A-Tn;
执行后,为何E中每个值并不是1e-5的数量级,最小的为0.0001,最大的可以达到0.0191呢?
谢谢
展开
 我来答
煌兮诸火
2009-04-24 · TA获得超过127个赞
知道小有建树答主
回答量:47
采纳率:0%
帮助的人:0
展开全部
1.初始权值不一样,如果一样,每次训练结果是相同的
2.是
3.在train之前修改权值,IW,LW,b,使之相同
4.取多次实验的均值
一点浅见,仅供参考

训练误差是否降到一定范围内,比如1e-3,
将训练样本回代结果如何,
训练样本进行了预处理,比如归一化,而测试样本未进行同样的处理

这样的归一化似有问题,我也认为“测试数据的归一化也用训练数据归一化时得出的min和max值”,
请参考这个帖子http://www.ilovematlab.cn/thread-27021-1-1.html
测试数据带入训练好的神经网络误差当然不会达到1e-5,这是预测啊。
但将训练数据带入误差必然是1e-5,算法终止就是因为达到这个误差才终止,这个误差是由训练数据的输入、输出以及神经网络的权值、激活函数共同决定的,神经网络训练完后,权值、激活函数定了,同样的数据再代入神经网络,误差会不等于1e-5?
第二个问题:不可能每个值都达到1e-5,1e-5是MSE(mean square error),它们的平方和除以总数再开方,mse(E)必为1e-5
另外,LM算法虽然训练最快,但是预测精度一般不好,不如gdm,gdx
富港检测东莞有限公司
2024-12-25 广告
ISTA3L是一个基于研究、数据驱动的测试协议,它模拟了由零售公司完成的产品订单被直接运送给消费者时所经历的危险,它允许用户评估包装产品的能力,以承受运输和处理包装产品时所经历的供应链危险,从接收到任何电子商务零售商履行操作,直到最终消费者... 点击进入详情页
本回答由富港检测东莞有限公司提供
zylq960606
2009-04-22
知道答主
回答量:26
采纳率:0%
帮助的人:0
展开全部
1.初始权值不一样,如果一样,每次训练结果是相同的
2.是
3.在train之前修改权值,IW,LW,b,使之相同
4.取多次实验的均值
一点浅见,仅供参考
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式